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a b s t r a c t

A hybrid Finite Element-Plane Wave Expansion method is presented for the band structure analysis of
phononic crystal plates with two dimensional lattice that are in contact with acoustic half-spaces. The
method enables the computation of both real (propagative) and imaginary (attenuation) components
of the Bloch wavenumber at any given frequency.
Three numerical applications are presented: a benchmark dispersion analysis for an oil-loaded

Titanium isotropic plate, the band structure analysis of a water-loaded Tungsten slab with square cylin-
drical cavities and a phononic crystal plate composed of Aurum cylinders embedded in an epoxy matrix.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the past two decades, propagation of elastic waves in pho-
nonic crystal (PC) plates has attracted much attention due to their
unique dynamic properties such as negative refraction [1], stop-
band filtering [2], cloaking [3], among the other unconventional
properties. PC plates are generally made of periodically distributed
inclusions in a hosting material (matrix) and, depending on the
physical nature of the components, can be classified in solid-
solid, fluid-fluid and mixed solid-fluid composite systems [4].

In normal ambient conditions, the atmosphere surrounding the
PC plate does not induce significant radiation of energy due to the
high impedance mismatch at the solid-fluid interface. Therefore,
such systems are treated as being in vacuum. However, PC plates
surrounded by heavier fluids require mathematical models with
appropriate radiation boundary conditions. Although a number of
theoretical and experimental studies can be found in literature
for the band-structure analysis of PC plates immersed in vacuum
[4,5], their fluid-loaded counterparts seem to have received minor
attention. Early studies in this sense are represented by the works
of Mace [6], Eatwell [7] and Mead [8], who investigated the radia-
tion properties of fluid-loaded plates stiffened along one principal
direction. More recently, different formulations have been

proposed in which half-spaces have been modeled by means of
analytical methods [9] as well as Finite Element (FEM)-based
absorbing regions [10–12] and Perfectly Matched Layers [13,14],
while the so-called Plane Wave Expansion (PWE) method has been
used in [15–17].

The main goal behind the present paper is to develop a coupled
FEM-PWE method which enables the computation of the complex
wavenumber-frequency band diagram for elastic PC plates with
inclusions of arbitrary shape that are in contact with perfect fluids.
The proposed formulation has the major advantage of avoiding
spurious modes typical of numerical methods based on a finite dis-
cretization of the semi-infinite medium. Moreover, it can be
extended to the case of lossy materials. However, the method can-
not be applied to the case of a PC plate with a unit cell involving
different material types such as fluid and solids. In order to bench-
mark the method, a fluid-loaded homogeneous isotropic plate is
first examined, while the band structures for the real and imagi-
nary components of the Bloch wavenumber are shown for a 1D
PC and a 2D PC plate.

2. Hybrid Finite Element-Plane Wave Expansion (FEM-PWE)
method

In this section, a hybrid variational formulation is described for
the PC plate of Fig. 1 with d1- and d2-periodicity along directions 1
and 2, respectively, thickness h and density q. The plate is in
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contact along the surface Cf with a perfect fluid of density qf and
sound speed cf that is infinitely extended along the direction 3.
The domain of the primitive solid cell is denoted by V ¼ Xh, where
X ¼ d1g1 � d2g2j j while gj represents the unit vector in the j-th
direction.

By means of Bloch’s theorem, the displacement in the solid PC
and pressure in the fluid are given by uðx; tÞ ¼ ~uðx; tÞ
exp½iðkTx�xtÞ� and pðx; tÞ ¼ ~pðx; tÞ exp½i ðkTx�xtÞ�, respectively,
where i is the imaginary unit, t is time, x denotes the angular

frequency, x ¼ ½x1; x2; x3�T is the configuration vector,
~uðx; tÞ ¼ ½~u1; ~u2; ~u3�T and ~pðx; tÞ are X-periodic functions while
k ¼ ½j1;j2;0�T ¼ jUð#Þ is the Bloch wavevector, being Uð#Þ ¼
cos#; sin#;0½ �T and # its orientation anglewith respect to the axis x1.

Following a procedure similar to that outlined in [5] and
accounting for the virtual work on the plate from the external fluid,
a variational formulation for the solid PC can be stated as (the time
dependency being dropped for conciseness)

�
Z
V
qðxÞx2 d~uðxÞð ÞH~uðxÞdv þ

Z
V

deðx; #Þð ÞHCðxÞeðx; #Þdv

�
Z
Cf

ðd~uðxÞÞH~pðxÞn3ds ¼ 0; ð1Þ

where CðxÞ ¼ CijklðxÞ denotes the fourth order elasticity tensor,

eðx;#Þ ¼ P3
j¼1Lj½@=@xj þ ijUð#ÞgT

j �~uðxÞ indicates the Bloch strain
vector, in which Lj are compatibility operators defined in [18]-Eq.
(8) while n3 ð¼ �g3Þ is the outward normal at x 2 Cf .

Eq. (1) is discretized via a standard finite element discretization
scheme for the solid PC, while the Plane Wave Expansion method
[19,20] is used to represent the wave field in the acoustic half-
space. Accordingly, the displacement field at x 2 ðV [ Cf Þ is interpo-
lated as ~uðxÞ ¼ NðxÞ~qðxÞ, whereNðxÞ is amatrix of polynomial shape
functions and ~qðxÞ denotes the vector of nodal displacements. The

pressure field is expanded as pðxÞ ¼
Xþ1

l;m¼�1Alm exp½iðkþ wlmÞTx�,
where Alm ¼ Plm expðijlmgT

3xÞ and wlm ¼ ½2pl=d1;2pm=d2;0�T, being
Plm an unknown complex wave amplitude and

jlm ¼ klmj j ¼ �½j2
f � ðkþ wlmÞTðkþ wlmÞ�

1=2
, in which jf ¼ jkf j ¼

x=cf is the fluid wavenumber. By enforcing the continuity equation
@pðxÞ=@n3jCf

¼ �x2qfn
T
3uðxÞ on the fluid–solid interface and using

orthogonality, the Bloch pressure and normal displacement mode
functions can be expressed respectively in the form

~pðxÞ ¼
Xþ1

l;m¼�1
Alm exp iwT

lmx
� �

; ð2Þ

�x2qfn
T
3
~uðxÞ ¼

Xþ1

l;m¼�1
ijlmAlm exp iwT

lmx
� �

: ð3Þ

The Fourier coefficients in Eq. (3) are given by

Almðx; #Þ ¼ � iqfx2

jlmðx; #ÞX
Z
Cf

nT
3
~uðxÞ exp �iwT

lmx
� �

ds: ð4Þ

Incorporating Eq. (4) into Eq. (2), substituting the resulting
expression into Eq. (1) and applying a standard finite element
assembling procedure over the ð1; . . . ; e; . . . ;NeÞ elements of the
mesh results in the following system of 5equations:(
j2K3ð#Þþ ij

"
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#
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where ~Q ðx; #Þ ¼ S
e
~qeðx; #Þis the global vector of nodal displace-

ments,
S

e denotes the assembling operation and
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e
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It is remarked that, in order to obey periodicity, Eq. (5) must be
subjected to appropriate periodic Dirichlet boundary conditions
(PDBC) on the lateral boundaries of the cell (see [5,20] for further
details).

Eq. (5) is configured as a nonlinear eigenvalue problem in the
complex Bloch wavenumber jðx; #Þ for any fixed real positive fre-
quency x and assigned orientation # 2 ½0;2p�, and it is solved in
the present work by means of a contour integral algorithm [21]. It
should be noted that, while the real components of kðx; #Þ are
restricted to the first Brillouin zone (�p=dj 6 Reðjjðx; #ÞÞ 6 p=dj;

j ¼ 1;2), the imaginary components, describing the wave decay in
space along the corresponding directions, are unbounded.

Of fundamental importance in the solution of the dispersion
equation is the determination of the correct sign of jlm, which is
a two-valued function of the Bloch wavenumber jðx; #Þ. The
choices of sgnðjlmÞ with physical meaning depend on the behavior
of the spatial harmonic ðl;mÞ in the acoustic region [22] and are
listed in Table 1.

3. Numerical applications

Inorder tovalidate theproposedmethod, abenchmarkanalysis is
first proposed for a homogeneous Titanium plate (q ¼ 4460 kg=m3,

Fig. 1. PC plate model with acoustic half-space (a), primitive cell (b) and corresponding 2D reciprocal lattice (c).
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