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a b s t r a c t

We studied free vibrations of thin-film bulk acoustic wave filters with interdigital electrodes theoretically
using the scalar differential equations by Tiersten and Stevens. The filters are made from AlN or ZnO films
on Si substrates with ground and driving electrodes. They operate with thickness-extensional modes. The
basic vibration characteristics including resonant frequencies and mode shapes were obtained. Their
dependence on various geometric parameters was examined. It was found that for properly design filters
there exist trapped modes whose vibrations are strong in regions with a driving electrode and decay
away from the electrode edges. These trapped modes are essentially long plate thickness-extensional
modes modulated by the electrode fingers. The number of trapped modes is sensitive to the geometric
parameters.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Thin piezoelectric films of AlN or ZnO with proper electrodes
can be deposited on a silicon layer to form thin film bulk acoustic
wave resonators (FBARs or TFBARs) operating in the high fre-
quency range of GHz [1–6]. The c-axis of the material can be along
the normal or the in-plane direction of the film, tilted at some
angle, or even zigzag in a multilayered film [7–12]. The films can
be lifted or solidly mounted on a substrate [13,14]. Structurally,
FBARs are composite plate resonators of piezoelectric, metal and
dielectric layers. When there are multiple driving electrodes, these
plates can operate as two-port filters [15,16] or filters with inter-
digital electrodes [17–19].

Typical and basic theoretical models of FBARs are one-
dimensional, with one spatial variable along the normal direction
of the layers only. While being able to describe the most basic
behaviors of FBARs through the prediction of pure thickness reso-
nant frequencies and modes which can only exist in unbounded
plates, one-dimensional models cannot describe in-plane mode
variations in finite devices for which pure thickness modes do
not exist. In-plane mode variations are also inherent in real FBARs
with driving electrodes covering part of the piezoelectric films
only. Partial electrodes are responsible for an important phe-

nomenon call energy trapping in which the vibration is mainly
confined under the partial electrodes and decays rapidly outside
the electrode edges. Energy trapping is crucial to device mounting
which can be designed at a distance sufficiently far away from the
electrode edges so that the vibration of the device is unaffected by
mounting. Energy trapping is also fundamentally important for the
interactions between input and output electrodes in monolithic
thin film filters with acoustic interactions. In spite of the strong
need for the study of in-plane mode variations in FBARs, reported
theoretical results are few and scattered, e.g., [20,21] because of
the structural complexity of FBARs and the related mathematical
challenges in theoretical modeling.

Tiersten and Stevens [15] derived a two-dimensional scalar dif-
ferential equation that can describe the in-plane variation of the
thickness-extensional operating mode and the related energy trap-
ping in FBARs made from thin piezoelectric films on a Si layer. The
scalar equation is simple and accurate. The dispersion relations of
long thickness-extensional waves predicted by the scalar equation
agree very well with those obtained from the three-dimensional
equations of linear piezoelectricity at long wavelengths near the
cutoff frequencies of the these modes, which is the frequency
and wave number range of interest for the operation of FBARs.
However, the equation has not been used very often. It was prob-
ably because that the derivation of the equation was very involved
and one needs to go through a significant amount of algebra to cal-
culate the coefficients of the equation in order to use it. So far the
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scalar equation has been used in the analysis of a rectangular
trapped energy resonator in [15,22], a two-port filter in [15,16],
and a rectangular resonator with ring electrodes for sensor applica-
tion [23].

In this paper we present the results from our recent theoretical
analysis using the scalar differential equation in [15] on thin film
filters with interdigital electrodes for which numerical and exper-
imental results were reported in [17–19]. We performed a free
vibration analysis to obtain the most basic vibration characteristics
of the filters which were not reported in [17–19]. These include the
resonant frequencies, mode shapes and energy trapping.

2. Scalar differential equations for FBARs

The two-dimensional scalar differential equation governing the
thickness-extensional motion of a thin AlN (or ZnO) film on a Si
layer is slightly different depending on whether there is a top elec-
trode or not. The top electrode is for electrically driving the device.
In the case of a filter, the top electrodes are for electrical input and
output. We consider time-harmonic motions and use the usual
complex notation. All fields have the same time dependence with
a common factor exp (ixt) which will be dropped below.

Let the normal of the filter be along the x3 axis which is the c-
axis of AlN or ZnO. When there is not a top electrode, the nth-
order thickness-extensional displacement is approximately repre-
sented by [15]

un
3 ffi f nðx1; x2Þgnðx3Þ; ð1Þ

in which the in-plane field variation that we are interested in is
described by fn(x1, x2) which is governed by Eq. (6.2) of [15]:
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Similarly, when there is a top electrode with a potential V exp
(ixt) on the electrode, the corresponding equation is Eq. (6.1) of
[15]:
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Although (2) and (3) are simple, their coefficients need to be
calculated through a series of expressions and equations scattered
in a very lengthy derivation in [15]. To make it convenient, these
expressions and equations needed for calculating the coefficients
in (2) and (3) were summarized in the appendix of [22].

The Mn in (2) and (3) may be positive or negative. As to be seen
later, the sign of Mn affects the behavior of the solutions of (2) and
(3) in a fundamental way and a positive Mn is associated with the
desired modes with energy trapping. In Fig. 1(a), corresponding to
the ZnO FBAR in [15,22] with n = 1, we plotMn versus the thickness
of the piezoelectric film. The material constants of ZnO and Si were
from [24]. The figure shows that Mn may change its sign, and when
it does so it goes through infinity rather than zero. For the specific
thicknesses of the ZnO film in [15,22] with hf = 15 lm, the corre-
spondingMn is positive as indicated in the figure by an arrow. Sim-
ilarly, for the AlN thin film filter in [17,18] with n = 4,Mn versus the
thickness of the AlN film is shown in Fig. 1(b). The material con-
stants of AlN were from [25]. The specific Mn of the filter in
[17,18] with hf = 1 lm is positive as indicated. Fig. 1 is useful in
design for properly choosing the thickness of the piezoelectric film
and the thickness of the Si layer for a positive Mn. Our numerical
studies also showed that Mn may change its sign again for values
of hf outside the ranges shown in Fig. 1.

3. Theoretical model for thin film filters with interdigital
electrodes

Consider the thin film filter with interdigital electrodes in Fig. 2.
It has P parts where P is an odd number. Let p range from 1 to P.
p = 1 represents the unelectroded part at the left edge of the plate.
p = 2,3,4, . . . , P-1 are the interior periodic parts either with inter-
digital electrodes or unelectroded, and p = P is the unelectroded
part at the right edge of the plate. The pth part occupies an interval

ðxðpÞ1 ; xðpþ1Þ
1 Þ on the x1 axis.

For filters with interdigital electrodes, the electrodes are long in
the x2 direction and the variation of the fields along x2 is small.
Therefore we neglect the small x2 dependence. In a region without
an input or output electrode, from (2), the governing equation is
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If a region is with an input electrode, from (3), the governing
equation is
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Similarly, in a region with an output electrode, from (3), the
governing equation is
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At the left and right edges, the boundary conditions are

f n ¼ 0; x1 ¼ xð1Þ1 ;

f n ¼ 0; x1 ¼ xðPþ1Þ
1 ;

ð7Þ

which physically represent free edges (see the discussion following
Eq. (4.50) of [15] regarding the relationship between u3 and the rel-
atively large stress component T11). Along a line parallel to x2 sep-
arating a two-dimensional region with a top electrode and a
region without a top electrode, the continuity of fn and its normal
derivative perpendicular to the line must be continuous [15], i.e.,
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according to Eq. (5.22) of [15].

4. Analytical solution

We consider the case of Mn > 0 only which has energy trapping
and is useful in devices. In this case, for the pth part of the filter, if it
is unelectroded, we write its solution from (4) as

f n ¼ AðpÞ expðax1Þ þ BðpÞ expð�ax1Þ; ð9Þ
where A(p) and B(p) are undetermined constants and we have
denoted

a2 ¼
�c f
33ĝ2

f n � q fx2

Mn
> 0; ð10Þ

which imposes an upper bound on the frequencyx. A positiveMn is
needed for (10) to hold in the frequency range of interest and hence
the exponential solution in (9) which is responsible for the decay of
fields when there is not a top electrode (energy trapping). If the pth
part is with an input electrode, its solution from (5) is

f n ¼ AðpÞ cosðbx1Þ þ BðpÞ sinðbx1Þ þ cVin; ð11Þ
where
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