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a b s t r a c t

To facilitate monitoring crystal size distribution (CSD) during a crystallization process by using an in-situ
imaging system, a sparsity-based image analysis method is proposed for real-time implementation. To
cope with image degradation arising from in-situ measurement subject to particle motion, solution
turbulence, and uneven illumination background in the crystallizer, sparse representation of a real-time
captured crystal image is developed based on using an in-situ image dictionary established in advance,
such that the noise components in the captured image can be efficiently removed. Subsequently, the
edges of a crystal shape in a captured image are determined in terms of the salience information defined
from the denoised crystal images. These edges are used to derive a blur kernel for reconstruction of a
denoised image. A non-blind deconvolution algorithm is given for the real-time reconstruction. Conse-
quently, image segmentation can be easily performed for evaluation of CSD. The crystal image dictionary
and blur kernels are timely updated in terms of the imaging conditions to improve the restoration ef-
ficiency. An experimental study on the cooling crystallization of α-type L-glutamic acid (LGA) is shown to
demonstrate the effectiveness and merit of the proposed method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Monitoring the crystal size distribution (CSD) during a crys-
tallization process is very important for control optimization to
obtain the desired product quality and production efficiency [1].
With the rapid development of process analytical technology (PAT)
in the past decade [2], a few real-time measurement methods have
been explored for measuring CSD based on using the laser dif-
fraction (LD), ultrasound attenuation (UA), and focused beam re-
flectance measurement (FBRM) technologies [3,4]. In particular,
FBRM has been increasingly applied for on-line monitoring of
crystal size distribution termed as cord length distribution [5,6],
which is mainly effective for spherical particles. However, these
technologies cannot offer two-dimensional details of crystal size
or shape. By comparison, high-speed optical imaging devices have
also been gradually adopted for crystal size measurement and
shape identification in the recent years [2,7]. Real-time image
analysis has therefore become intensively appealed for monitoring
crystallization processes.

Based on using an invasive or non-invasive imaging system for

monitoring a crystallization process, a small number of real-time
image analysis methods were explored for measuring crystal size
or CSD [2,8]. By using a non-invasive imaging system, Larsen et al.
[9] presented a model-based object recognition algorithm to ex-
tract crystal size information for the α-glycine crystallization
process from the captured images; A synthetic image analysis
method was developed for in-situ crystal type identification and
size measurement in the recent paper [10]. By comparison, an
invasive imaging system named particle vision and measurement
(PVM) was adopted to develop a comprehensive image analysis
[11] on the crystal size of monosodium glutamate during crystal-
lization. In addition, a flow-through cell imaging device was used
to estimate CSD [12], based on crystal image segmentation using
the wavelet transform and fuzzy C-means clustering strategy. The
device was further extended to take in-situ crystal images from
two perpendicular directions [13], such that a faster image analysis
algorithm was proposed to classify particles and count the particle
sizes. A multivariate image analysis method was combined with a
classical image technique for in-situ estimation of CSD [14]. To
address the problem of out-of-focus particles provoking degraded
imaging for in-situ monitoring, Presles et al. [15] developed an
optimization strategy into the image analysis to acquire better
particle characterization. To effectively extract the moving particle
information for on-line measurement of particle size, Chen et al.
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[16] proposed a fast image processing algorithm for correction of
imaging illumination and binarization in a two-phase flow. To
tackle the recognized challenge of estimating the crystal growth
rate from real-time captured images, a few advanced image pro-
cessing techniques were presented to estimate the crystal length
distribution specifically for needle-shaped crystals [17]. Agimelen
et al. [18] adopted the mean aspect ratio of all the particles in the
captured image by PVM to reduce the computation effort for
particle size estimation. However, little work had been devoted to
improve the captured image quality against the influence from the
solution turbulence and time-varying illumination background
with respect to the crystallization progress, which should be en-
visaged for effective particle extraction and CSD estimation during
the crystallization process.

To eliminate the influence from particle motion, solution tur-
bulence, uneven illumination background, and imaging noise, it is
necessary to restore the true crystal images from the captured
images in a fast manner. A synthetic sparsity-based image analysis
strategy is therefore proposed in this paper for real-time mon-
itoring of CSD with high efficiency and accuracy. Firstly, the noise
in a captured crystal image is filtered out by using an image dic-
tionary established in advance. Then the edges of a crystal shape in
the captured image are determined in terms of the salience in-
formation defined from the denoised crystal images. These edges
are used to determine the blur kernel for reconstruction of a de-
noised image. To this end, image segmentation is proceeded for
evaluation of CSD subject to uneven illumination background.
Experimental results are shown to demonstrate the proposed
image analysis method for in-situ measurement of CSD for an L-
glutamic acid (LGA) crystallization process.

2. Image analysis

Analysis of real-time crystal image aims at obtaining the details
of CSD. The whole process of image analysis strategy for real-time
CSD measurement is shown in Fig. 1, including image

preprocessing, image restoration, and image segmentation, which
are presented in the following subsections, respectively.

2.1. Image preprocessing

In general, the size of a captured image depends on the re-
solution of an imaging system. Typically, when the size of a cap-
tured image becomes larger, a longer processing time is needed for
on-line image analysis. To alleviate the time delay, an efficient
method based on the wavelet transform [19] is adopted for
downsizing the captured images while maintaining necessary in-
formation for real-time analysis. Given an original image ( )f x y,
with the size ×M N , a two-dimensional discrete method is used
for the wavelet transform based on the biorthogonal wavelet
function [19]. Denote by m the row, by n the column, and by j the
scale. The discrete wavelet transform for ( )f x y, is defined by

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

∑ ∑

∑ ∑

φ

ψ

( ) = ( ) ( )

( )

= ( ) ( ) = { }
( )

φ

ψ

= =

= =

A j m n
MN

f x y x y

A j m n

MN
f x y x y i H V D

, ,
1

, ,

, ,

1
, , , , ,

1

x

M

y

N

j m n

i

x

M

y

N

j m n
i

1 1
, ,

1 1
, ,

where

⎧
⎨
⎪⎪

⎩
⎪⎪

φ φ

ψ ψ

( ) = ( − − )

( ) = ( − − )

= { } ( )

x y x m y m

x y x m y m

i H V D

, 2 2 , 2

, 2 2 , 2 ,

, , 2

j m n
j j j

j m n
i j i j j

, ,
/2

, ,
/2

where ψ ( )x y,j m n
i
, , , = { }i H V D, , are used to identify three direc-

tional edges including horizontal, vertical, and diagonal directions,
respectively. Then the original image ( )f x y, is decomposed into
four parts at the scale j: a low frequency component ( )φA j m n, ,
which is used for approximating ( )f x y, , and three high frequency
components ( )ψA j m n, ,i to be removed.

2.2. Image restoration

Generally, a crystallization process is involved with solution
agitation. Although a high-speed camera can be used to reduce the
capture time for imaging, solution turbulence interferes with real-
time imaging, causing difficulty to discern the outlines of
crystals. To deal with the problem, a restoration algorithm is
proposed to remove noise and blurs from the captured images, in
order to facilitate the subsequent image segmentation and CSD
measurement.

The key idea of image restoration is to establish a degradation
model to recover the crystal images from the captured images, and
then use a mathematical method of solving the inverse problem to
obtain the optimal approximation of the original image. Due to
that the related parameters (additive noise and blur kernel)
could not be known in advance, a blind restoration method is
explored here, including degradation model construction, image
filtering, dictionary learning, salient edge estimation, blur kernel
estimation, image deconvolution, as detailed in the following
subsections.

2.2.1. Degradation model construction
It is assumed that in a captured crystal image with a short time

exposure, the blur kernel is space-invariant. That is, the degrada-
tion model is simplified as
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Fig. 1. The flow chart of image analysis.
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