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We propose a method for segmenting brain tissue as either gray matter or white matter in the presence of
varying tissue contrast, which can derive from either differential changes in tissuewater content or increasing
myelin content of white matter. Our method models the spatial distribution of intensities as a Markov
RandomField (MRF) and estimates the parameters for theMRFmodel using amaximum likelihood approach.
Although previously described methods have used similar models to segment brain tissue, accurate model of
the conditional probabilities of tissue intensities and adaptive estimates of tissue properties to local
intensities generates tissue definitions that are accurate and robust to variations in tissue contrast with age
and across illnesses. Robustness to variations in tissue contrast is important to understand normal brain
development and to identify the brain bases of neurological and psychiatric illnesses. We used simulated
brains of varying tissue contrast to compare both visually and quantitatively the performance of our method
with the performance of prior methods. We assessed validity of the cortical definitions by associating cortical
thicknesswith various demographic features, clinicalmeasures, andmedication use in our three large cohorts
of participants whowere either healthy or who had Bipolar Disorder (BD), Autism Spectrum Disorder (ASD),
or familial risk for Major Depressive Disorder (MDD).
We assessed validity of the tissue definitions using synthetic brains and data for three large cohort of
individuals with various neuropsychiatric disorders. Visual inspection and quantitative analyses showed that
our method accurately and robustly defined the cortical mantle in brain images with varying contrast.
Furthermore, associating the thickness with various demographic and clinical measures generated findings
that were novel and supported by histological analyses or were supported by previous MRI studies, thereby
validating the cortical definitions generated by the proposed method: (1) Although cortical thickness
decreased with age in adolescents, in adults cortical thickness did not correlate significantly with age. Our
synthetic data showed that the previously reported thinning of cortex in adults is likely due to decease in
tissue contrast, thereby suggesting that the method generated cortical definitions in adults that were
invariant to tissue contrast. In adolescents, cortical thinning with age was preserved likely due to widespread
dendritic and synaptic pruning, even though the effects of decreasing tissue contrast wereminimized. (3) The
method generated novel finding of both localized increases and decreases in thickness of males compared to
females after controlling for the differing brain sizes, which are supported by the histological analyses of brain
tissue in males and females. (4) The proposed method, unlike prior methods, defined thicker cortex in BD
individuals using lithium. The novel finding is supported by the studies that showed lithium treatment
increased dendritic arborization and neurogenesis, thereby leading to thickening of cortex. (5) In both BD and
ASD participants, associations of more severe symptoms with thinner cortex showed that correcting for the
effects of tissue contrast preserved the biological consequences of illnesses. Therefore, consistency of the
findings across the three large cohorts of participants, in images acquired on either 1.5T or 3T MRI scanners,
and with findings from prior histological analyses provides strong evidence that the proposed method
generated valid and accurate definitions of the cortex while controlling for the effects of tissue contrast.
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1. Introduction

Precisely segmenting brain tissue as either gray matter (GM) or
white matter (WM) in anatomical MR images of the brain is
essential for accurately measuring various brain features, such as
the thickness of the cortical mantle [1]. These measures represent
the characteristics of brain tissue that are the end product of
developmental processes that shape the brain in health and in
illness and that therefore permit the in vivo study of both normal
brain development and aberrant development that produces
neurological and neuropsychiatric illnesses [2–8]. However, the
presence of noise, partial volume effects, variations in tissue
intensities and contrast with age [9], and nonuniformities in tissue
intensities that derive from inhomogeneous B1 fields introduce
errors in the tissue segmentations. Therefore, methods for accurate
tissue segmentation must be robust to these sources of error.

Some of the presently available methods for tissue segmentation
are reasonably robust to the presence of noise and intensity
inhomogeneities. These methods typically model the distribution
of tissue intensities as a mixture of Gaussian distributions, and they
apply a method for Expectation Maximization (EM) [10] to estimate
the mean and variance of the Gaussian distributions while
maximizing the likelihood of the observed data. These methods
have been extended to estimate and correct for intensity inhomo-
geneities simultaneously while segmenting tissues [10] and are
robust to the initial estimate of tissue definitions [11]. However, in
the presence of salt-and-pepper, white noise these methods label
isolated WM voxels as GM and GM voxels as WM. These errors are
mitigated by other prior methods that model the spatial distribution
of tissue intensities as a Markov Random Field (MRF) that imposes
the constraint that brain regions must consist of a homogeneous
tissue type [12]. Several other methods use k-nearest neighbor
(kNN) [13], Fuzzy clustering [14], or Bayesian MRF/EM based
formulation [15] to generate a probabilistic tissue segmentations
[16]. The performance of these methods is typically evaluated by
visual inspection of the tissue definition and by comparing
quantitatively the statistics of segmented tissues with those for
tissue segmented either by other methods and subsequently edited
by a human expert, or using a computer-generated brain with
known tissue definitions. Although these prior methods have
differing mathematical formulations, their performances on
real-world datasets have been similar, with no one method
performing significantly better than others [17].

Noise and partial volume effects, as well as variations in tissue
contrast, can significantly influence performance of the prior
methods for tissue segmentation. One of the major sources of
variation is the spatial variation in B1 excitation and refocusing
pulses, which produces inhomogeneous excitation of the protons
within and across homogeneous tissues. Inhomogeneous excita-
tions in turn lead to variations in signal intensity and tissue
contrast for a specified pulse sequence parameters. While, the
effects of inhomogeneous tissue intensities on segmentation can be
minimized by homogenizing tissue intensities across a brain either
by first estimating the spatial variation in signal intensity and then
correcting them using algorithms such as N3 [18] and N4ITK [19],
or by simultaneously estimating intensity inhomogeneities and
delineating brain tissue [10]. However, these methods cannot
account for the effects of variations in tissue contrast on tissue
definitions across participant brains.

These methods can help to correct B1-based inhomogeneities in
signal intensities, but they cannot account for the variations in tissue
contrast that derive from the biological processes that influence
tissue contrast and the validity of tissue segmentation, such as
spatial variations in the myelin content of white matter (WM), iron
content in deep gray matter (GM) nuclei, and water content across

both tissue types [9]. These biological influences on signal intensity
and tissue contrast can also change with age or vary across illnesses
and healthy participants, thereby altering the definitions of GM and
WM in the brain and important measures that depend on those
definitions, such as cortical thickness. We have previously shown
using synthetic, real-world data, and mathematical derivations that
commonly used platforms for tissue segmentation define thinner
cortices in brain images that have lower tissue contrast. [9]
Furthermore, age related changes in tissue water content decreases
tissue contrast with age, thereby biasing the existing methods to
define thinner cortex in brains of increasing ages [9,20,21].
Investigators have assumed that the age-related thinning of the
cortical mantle that has been reported across numerous studies
represent only age-related changes in the cellular and histological
features that define differing tissue types in the brain, such as the
density of neuronal cell bodies, dendrites, synapses and other
neuropil components of GM or the axons and myelin of WM [22].
But that is an incorrect assumption. A substantial portion of
age-related thinning of the cortical mantle as defined using
contrast-based segmentation of tissues on MR images derive from
age-related changes in water and other biological variables that are
unrelated to those cellular features, including neuropil and axons,
that define GM and WM. Similarly, abnormalities reported across
diagnostic groups in measures of cortical thickness could derive
simply from illness-related differences in water, myelin, or iron
content that influences tissue contrast without representing differ-
ences across groups in the cellular features that define GM and WM.
Amethod for tissue segmentation is needed that accurately accounts
for variations in tissue contrast and generates more valid definitions
of tissues and the brain measures that depend on them, such as
cortical thickness.

Our proposed method for tissue segmentation models the spatial
distribution of intensities as a Markov Random Field (MRF) in order
to impose the constraint that the brain consists of various
homogeneous tissues, similar to previous methods [12]. Our method
maximizes the likelihood of the observed data using an Expectation
Maximization (EM)-based algorithm that estimates the parameters
in the MRF formulation. It uses an accurate mathematical formula-
tion for the conditional probabilities in the MRF model and adapts
the parameters to the distribution of local tissue intensities. Unlike
the existing methods [23–27] that locally adapt only the mean
intensities to distributions of local image features, we adapted both
the average and variance of the tissue intensities generating accurate
tissue definitions that are robust to local variations in tissue
intensities. MRI does not have resolution and/or contrast to define
brain tissues determined by its cellular and molecular features.
However, tissue segmentation methods that are invariant to tissue
contrast and water content would generate tissue definitions that
are valid representations of cellular and molecular features that
define brain tissue. Our results showed that adapting parameters to
local distribution of tissue intensities and using accurate mathemat-
ical formulations generate tissue definitions that are robust to
variations in tissue contrast. We visually and quantitatively compare
the performance of our method with those of prior methods,
including one based on the histogram of voxel intensities and
another that uses prior formulation of conditional probabilities in
MRF model of tissue intensities without adaptive adjustment of
estimated parameters. We validate the segmentations of the cortical
mantle defined using our method by assessing their accuracy in
simulated brains in which the ground truth is known and in
real-world brain images of several hundred participants are either
healthy and who have Bipolar Disorder (BD), Autism Spectrum
Disorder (ASD), or familial risk for Major Depressive Disorder
(MDD). We expect that the proposed method would account for
the variations in tissue contrast while segmenting brain tissue and
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