
Contents lists available at ScienceDirect

Physica B

journal homepage: www.elsevier.com/locate/physb

Electron states and electron Raman scattering in a semiconductor step-
quantum well wire

Ri. Betancourt-Rieraa, Re. Betancourt-Rieraa,⁎, M. Munguía-Rodríguezb

a Instituto Tecnológico de Hermosillo, Avenida Tecnológico S/N, Col. Sahuaro, C.P. 83170, Hermosillo, Sonora, Mexico
b Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-88, CP 83190, Hermosillo, Sonora, Mexico

A R T I C L E I N F O

Keywords:
Electron states
Raman scattering
Nanowire
Quantum well wires

A B S T R A C T

The differential cross-section for an electron Raman scattering process in a semiconductor GaAs AlGaAs/ step-
quantum well wire is calculated and expressions for the electron states are presented. The system is modeled by
considering T = 0 K and also by a single parabolic conduction band, which is split into a sub-band system due to
confinement. The net Raman gain for an electron Raman scattering process is obtained. Also, the emission
spectra for several scattering configurations are discussed, and the interpretation of the singularities found in
the spectra is given. The results obtained in this study are compared with those obtained for other structures,
and so it has been demonstrated that the wire shows greater efficiency.

1. Introduction

The development of new synthesis methods has allowed the
construction of a variety of nanostructures, which a few years ago
could only be theoretically suggested [1]. Thus, new properties have
been discovered that are used in the design of new semiconductor
devices; such as lasers [2]. Electron Raman scattering has been used in
the research of semiconductor nanostructures since the late 1980s,
studying structures such as quantum wells, quantum wires and
quantum dots [3]. The study of phonons and electronic structures of
materials is of utmost importance because this information makes it
possible to determine multiple properties. Light scattering and Raman
scattering in particular are among the most important tools for
studying the structure of electrons and phonons in different types of
materials, especially in nanostructures [3–5]. When analyzing singula-
rities of a Raman emission (excitation) spectrum, where we consider
several polarizations of the incident light and scattered light we can
determine the energies of the electronic states. However, in order to
have a clear understanding of the band structure we must determine
the selection rules to be used [6,7].

The Raman scattering has allowed us to study semiconductor
nanostructures with different geometries and symmetries from the late
1990s to date. [8–15]. The Raman scattering in a semiconductor
quantum well, quantum wire and quantum dot systems considering
inter-band and intra-band transitions with and without the participa-
tion of confinement phonons, has been the subject of study in multiple
works, a summary of this can be analyzed in references [3,16]. The use

of semiconductor multiple quantum wells, has been proposed in
several works, as well as the semiconductor double quantum well wire
and other nanostructures, used as suitable systems for the development
of light sources, which can be designed to emit in a wide range of the
electromagnetic spectrum from ultraviolet to terahertz [17]. There are
several recently conducted studies in various systems with different
symmetries such as step-quantum well, double quantum well wire and
quantum dots [18,19]. These structures may have different geometries
besides the originally treated circular and squared shapes [20–22]. The
interest in these systems is due to the fact that they allow the
manufacture of a three-level system, where the energy levels can be
manipulated up to some extent by controlling a number of parameters
such as size and potential barrier [18,21–23]. Examples of these
devices are the step-quantum well and the asymmetrical multiple
quantum well, manufactured based on a GaAs AlGaAs/ matrix.
Moreover, this technique allows knowing the effect of the electric or
magnetic fields on the band structure and on the selection rules of
electron transitions [8–15,24–26]. Also, it has been found that Raman
scattering is sensitive to the dimensionality and symmetry of systems
[3,4]. In these studies, different conditions such as the presence or
absence of an external electrical or magnetic field have been chosen;
nanostructures with the presence of both fields have also been studied
[8–15,24–26]. An important issue is the presence or absence of
transitions due to electron-phonon interactions, where phonons may
be confined or not, since the study of phonon modes is of great
importance for compressing the magnetic and optical properties of
surface states [1,8,27].
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The paper's purpose, is to demonstrate that step-quantum well
wire gain is superior to other system's, gain, such as the step-
quantum well and the multiple quantum wells. Thus, we show the
electronic states of a step-quantum well wire, and we describe its
fundamental characteristics, showing analytical expressions for the
wave function and the electron energy [28]. Furthermore, we will
also study the emission and excitation spectra for this system,
obtaining the differential cross-section for an intra-band electron
Raman scattering process. Finally, a Raman scattering model which
fulfills the following conditions is given: first, it considers the
presence of a single electron in the conduction band, which is split
into a sub-bands system due to confinement; second, we only
consider transitions within the conduction band, the reason for
this is that we will only use photons of incident radiation with a
lower energy than the gap; thirdly, in this case the presence of
phonons is not considered; in the fourth determination, the
quantum states are used in the envelope function approximation;
finally, T = 0 K [17,29] is considered. The aforementioned condi-
tions are commonly used in III-V and II-VI semiconductors, such
as GaAs AlGaAs/ [5].

Therefore, this work is organized in four sections: Section 2 is
dedicated to the obtaining of the electron states, in Section 3 we obtain
the differential cross-section for an electron Raman scattering process
and the net Raman gain for a three-level system, and Section 4 is
dedicated to a physical discussion of the results obtained.

2. Model and electronic states

We must determine the electron states of a semiconductor step-
quantum well wire system of cylindrical geometry, with length L and
radius rw, where the active region is composed of two cylindrical layers,
the first of radius rc that we will call “the core” and the second of width
ds that we will call “the shell” [19]. Consequently, we have that
r r d= + .w c s The confinement potential V( )r and the effective mass μ( )
are given by
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when considering the envelope function approximation on the solution
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where u r( )0 is the electron Bloch function in the band, Er is the energy
due to the spatial confinement. n and m represent the radial and
azimuthal quantum numbers, respectively. Finally, kz is the electron
wave-number in the z direction. Following the method described in
reference [3], the following solution is obtained for the radial part
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being Jm and Nm the Bessel functions of first and second kind of order
m. Im and Km the modified Bessel functions of first and second kind of
order m. Here, we have used the definitions of Bessel functions
according to Abramowitz [30].

To calculate the constants A ,2 B2 and B3 we must consider the
continuity of the function Ψ and the current density μ Ψ r(1/ )(∂ /∂ ) at the
interface, then
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being x x r= ( ),k k x x r= ( )k k and z z r= ( ).k k A1 which can be obtained using
the normalization condition
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Finally, the matching conditions allow us to determine the electron
states energies due to the spatial confinement E( )r from the solution of
the secular equation:
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Consistently, for each value of m, n energy values are obtained.
Therefore the electron states are described by: m = 0, 1, 2, …;
n = 1, 2, 3, …; and kz (see references [19,21]). It is important to clarify
that the main quantum number is n, which denotes the sub-bands;
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