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A B S T R A C T

At low temperatures, the heat capacity of a superparamagnetic “ideal gas” determined by magnetic degrees of
freedom can greatly exceed the lattice heat capacity. It is shown that in the presence of an external magnetic
field, the temperature dependence of the magnetic part of the heat capacity has two maxima. The relations
between the temperature at which these maxima are achieved, the magnetic moment of the nanoparticles and
the magnetic anisotropy constant have been obtained. Measuring the heat capacity maxima temperatures by
low-temperature calorimetry methods and using the obtained relations, we can obtain the numerical values
both of the magnetic moment of nanoparticles and the magnetic anisotropy constants.

1. Introduction

Over the past decades, the field of research and development of
physical characteristics of magnetic nanomaterials has undergone
dramatic changes. This is due to the development of efficient methods
for preparation and stabilization of nanometer sized magnetic particles
(nanoparticles), and to the development of physical methods for their
investigation [1–3]. When reducing the particle to a single domain size,
the impact of thermal fluctuations on the rotational dynamics of the
magnetic moment m of nanoparticles begins to grow. This type of the
random motion of the magnetic moment is called superparamagnet-
ism, and the system consisting of macroscopic amounts of this type of
nanoparticles – a superparamagnetic.

One of the distinguishing features of superparamagnetics from
conventional paramagnetic materials is that not individual atoms (or
molecules) are carriers of the magnetic properties of elementary
particles contained therein but magnetic nanoparticles containing a
large number of atoms in the magnetically ordered state. The magnetic
moments of nanoparticles are much larger than the magnetic moments
of single particles of a conventional paramagnetic of the order of only a
few Bohr magnetons. Another distinguishing feature of superparamag-
netics is related to the presence of the magnetic anisotropy energy of
their particles.

The magnetic characteristics of bulk samples – the anisotropy ratio
A and the magnetic moment m – depend on the volume [4]. However,
in the nanostructured magnetic particles A and m, the characteristics,
besides the volume, also depend on the surface area of the nanoparticle

[5]. The surface contribution complicates significantly the development
of theoretical methods for calculating these characteristics. The known
numerical values of the magnetic characteristics were obtained by
measuring the blocking temperature [6], or are known from the
experiments with cluster beams [7] and the total magnetization
relaxation studies [8].

In recent years, to determine the macroscopic characteristics of
materials (including superparamagnetics), the adiabatic calorimetry
allowing precise determination of the temperature dependence of the
heat capacity has been successfully used [9–18]. In [19], the idea of
determining the magnetic anisotropy constant by high-precision low-
temperature calorimetry methods has been suggested. In this paper,
methods for determining the magnetic characteristics (coefficient of
anisotropy and magnetic moment) of nanoparticles by means of low-
temperature heat capacity measurements are developed.

2. Magnetic energy of a nanoparticle and equations of
rotation

If nanoparticles in a superparamagnetic are obtained by nanos-
tructuring easy-axis ferromagnetics, they will also possess a magneti-
zation easy axis (anisotropy axis). The particle energy with uniaxial
magnetic anisotropy can be represented as [1–4]:

H θ A θ( ) = sin ,A
2 (1)

where θ is the angle between the vector direction of the magnetic
moment m of the nanoparticle and the anisotropy axis n (Fig. 1).
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Usually, the anisotropy factor and the magnitude of the magnetic
moment of the nanoparticle are represented as [1–4] A K V= V m and
m M Vm= | | = S m, where KV and MS are the densities of the correspond-
ing quantities. The nanoparticle is supposed to be of spherical shape,
consists of a central magnetic sphere of diameter dm (magnetic
diameter of the nanoparticle) and a nonmagnetic shell.V d=m

π
m6
3 is

the central magnetic sphere volume.
The anisotropy energy of one form or another is common to all

magnetization nanoparticles. Its highest value K( = 4.5·10 J/m )V
5 3 is

observed in hexagonal-structure cobalt [20], whereas in nanoparticles
of magnetite [21] (Fe O )3 4 it is smaller by an order of magnitude
K( = 4.8·10 J/m )V

4 3 .
The Hamilton function of the particle with uniaxial magnetic

anisotropy in the magnetic field has the form [1]

H θ ψ φ A θ E cosθ ψ θ ψ φ E mB A( , , ) = sin − ( cos + sin sin cos ), = , > 0.2

(2)

The first term in formula (2) represents the single axis magnetic
anisotropy energy (1), and the second term corresponds to the
interaction of the magnetic moment of the particle with the magnetic
field. In superparamagnetics, the angles θ and ψ are random variables.
The randomness of the variable θ is due to thermal fluctuations, and
the random nature of the variable ψ is caused by the initial spread of
the anisotropy axes of nanoparticles. Therefore, in equilibrium the
angles θ and ψ determining the magnetic moment direction are taken
from the minimum energy condition (2) with respect to the φ variable:

H
φ

E θ ψ φ∂
∂

= sin sin sin = 0.
(3)

For powder nanoparticles, the anisotropy axes are oriented ran-
domly and are not able to rotate, and the angle θ in the magnetization
process varies in the range θ π0 < ≤ . Therefore, neither of these angles
is identically equal to zero, and the minimum condition (3) reduces to
the identity equation φ ≡ 0, which means that in equilibrium the angles
θ and ψ lie in the same plane. Applying this condition to the energy (2),
we get for the Hamiltonian function of the powder magnetic nanopar-
ticle:

H θ ψ φ A θ E θ ψ( , , = 0) = sin − cos( − ).2 (4)

As follows from the analysis [1] of the Hamiltonian function (4), the
energy of the nanoparticle in the range θ π0 < ≤ has two minima (or
two potential wells) of different depth with the energy barrier between
them of the order of A. For the magnetic moment to rotate (to transfer
from one potential well to another), it is necessary to overcome this
energy barrier. At temperatures below the blocking temperature
T T( < )B , the magnetic moments are blocked in the potential wells

and hence do not change their orientation. At T T> B, over-barrier
fluctuating transitions occur, and after some time τN the whole
ensemble of nanoparticles forms a single magnetothermodynamic
system. The formula for the characteristic time of the fluctuating
over-barrier transitions at a A k T= / ≥ 1B was first derived by Néel
[1,3]. The Néel relaxation process is related to the relaxation process
inside the particle. Due to this relaxation the magnetic moment of the
particle changes its direction, whereas the particle itself may remain
fixed. Therefore, the Néel relaxation process is particularly important
for powder magnetic nanoparticles.

For magnetic fluids, along with Néel, there is also another relaxa-
tion mechanism associated with the possibility of rotation of a particle
(change in the variable ψ). This mechanism is characterized by the
Brownian relaxation time (or the time of rotational diffusion)

τ Vη
k T

= 3 ,B
B (5)

ηis the base fluid viscosity. Since the particle is able to rotate, the
minimum energy condition (2) can be fulfilled for θ

H
θ

A θ E θ ψ θ ψ φ∂
∂

= sin2 − ( − sin cos + cos sin cos ) = 0.
(6)

With allowance for the minimum condition (3) φ( = 0), we get from (6):

A θ E ψ θsin2 = sin( − ). (7)

Beside the relaxation forces proportional to the velocity ψ̇ , the
nanoparticle of the magnetic fluid is also affected by the magnetic force
moment

H θ ψ
ψ

E ψ θ∂ ( , )
∂

= sin( − ).
(8)

As a result, the equation for the angle variable ψ with allowance for (7)
for two different limiting cases can be written as

Iψ Vηψ E ψ θ E A Iψ Vηψ A ψ

θ ψ E A

¨ + 6 ˙ + sin = 0, ≈ 0, ≪ , ¨ + 6 ˙ + sin2 = 0,

≈ , ≫ , (9)

where I is the moment of inertia of the nanoparticle.

3. Mechanical anisotropy state

The analysis of the rotational motion of the magnetic fluid
nanoparticle under the action of the above forces made on the basis
of the Eqs. (9) has shown [21] that in sufficiently strong magnetic fields
the anisotropy axes can be parallel to the magnetic field induction
ψ( = 0). The resultant state is called the state of mechanical anisotropy.
The characteristic times of rotation of the particle axis, or of the
establishment of the mechanical anisotropy state are given by the
formulas

τ V
V

η
M B

B B= · 6 , for ≫ ,r
m S A

A
(10)

τ V
V

η
M B

τ
B
B

B B′ = · 6 = , for ≪ ,r
m S

r
A

A
(11)

where B K M A m≡ 2 / = 2 /A V S is the magnetic induction of the anisotropy
field.

The necessary condition for the state of mechanical anisotropy to be
realized is that the process of alignment of the anisotropy axes is more
rapid than its destruction by rotational-diffusion processes, i.e.
τ τ/ ≪ 1r B , for B B≫ A, or τ τ′ / ≪ 1r B , for B B≪ A. Substituting the values
(10) and (11) into these equations, we get τ τ a′ / = 1/ ≪ 1r B for B B≫ A
and τ τ a B B′ / = (1/ )( / ) ≪ 1r B A for B B≪ A. It is obvious that the realization
of the second condition is much more difficult.

Assuming that the condition of realization of the mechanical
anisotropy has been fulfilled, we substitute ψ = 0 into the energy
expression (4). Then we get for the Hamiltonian function

Fig. 1. Orientation of the vectors of the magnetic moment m and magnetic induction B
with respect to the easy-axis magnetization, BA is the magnetic induction of the

anisotropy field, ψ is the angle between the easy-axis n and the magnetic induction
vector B, θ and φ are the polar and azimuthal angles of the vector m, respectively. At
φ ≠ 0 the angles θ and ψ lie in different planes.
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