Accepted Manuscript

Reducing the spatial resolution range of neutron radiographs cast by thick objects

G.L. Almeida, M.I. Silvani, E.S. Souza, R.T. Lopes

 PII:
 S0168-9002(17)30827-6

 DOI:
 http://dx.doi.org/10.1016/j.nima.2017.07.055

 Reference:
 NIMA 60004

To appear in: Nuclear Inst. and Methods in Physics Research, A

Received date :20 March 2017Revised date :12 June 2017Accepted date :27 July 2017

Please cite this article as: G.L. Almeida, M.I. Silvani, E.S. Souza, R.T. Lopes, Reducing the spatial resolution range of neutron radiographs cast by thick objects, *Nuclear Inst. and Methods in Physics Research*, *A* (2017), http://dx.doi.org/10.1016/j.nima.2017.07.055

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

	ACCEPTED MANUSCRIPT
1	Reducing the spatial resolution range of neutron radiographs cast by thick objects
2	
3	[*] Almeida, G. L, Silvani, M. I.
4	Instituto de Engenharia Nuclear, Reator Argonauta - CNEN
5	Rua Helio de Almeida 75, Cidade Universitaria, Ilha do Fundao
6	Caixa Postal 68550 CEP 21941-972 Rio de Janeiro - RJ, Brazil
7	gevaldo@ien.gov.br
8	
9	Souza, E. S, Lopes, R. T.
10	Universidade Federal do Rio de Janeiro, COPPE, Centro de Tecnologia
11	Cidade Universitaria Bloco G, Ilha do Fundao, 21945-970 Rio de Janeiro - RJ, Brazil
12	msouza@ien.gov.br
13	* Company on ding outling
14 15	* Corresponding author
16	ABSTRACT
17	
18	The quality of a neutron radiograph is strongly dependent upon the features of the acquisition
19	system. Most of them, such as detector resolution, electronic noise and statistical fluctuation
20	can hardly be improved. Yet, a main parameter ruling the image spatial resolution, name
21	the L/D ratio of the system can be increased simply by lengthening the source-detector
22	clearance. Such an option eventually may not be feasible due to neutron flux decreasing of
23	engineering constraints. Under this circumstance, a radiograph improvement is only possible
24	by some kind of after-acquisition procedure capable to retrieve, at least partially, the
25	information concealed by the degradation process. Since the spoiling agent tied to the $L/$
26	has a systematic character, its impact can be reduced by an unfolding procedure such a
27	Richardson-Lucy algorithm. However, that agent should be fully characterized and furnishe
28	to the algorithm as a Point Spread Function - PSF unfolding function. A main drawback of
29	unfolding algorithms like Richardson-Lucy is that the PSF should be fixed, i.e., it assumes
30	certain constant image spatial resolution, rather than a variable one as actually occurs for
31	thick objects. This work presents a methodology to minimize this difficulty by making a
32	planes of the inspected object to cast a resolution within the shorter gap comprised betwee
33	the object central plane and the detector. The image can then be unfolded with a lower
34	resolution within a <i>tighter</i> range, yielding a better quality. The process is performed with tw
35	radiographs, where one of them is acquired with the object turned by 180° on its vertical ax
36	with regard to the other. After a mirroring of one of them about its vertical axis, the image
37	are added. As the resolution increases linearly with the object-detector gap, it would rema
38	always <i>lower</i> than that of the central one. Therefore, the overall resolution of the composi
39	radiograph is enhanced. A further improvement can then be achieved through an efficient
40	unfolding since the object has been virtually <i>shrunk</i> along the neutron path.
41	

41

42 Key words: Neutron radiograph, spatial resolution, deconvolution.

43 44

45 1. Introduction

46

As ruled by pinhole optics, neutron radiography suffers mainly the effect of the penumbra which degrades the quality of the final images. Although its impact could be reduced by increasing the L/D ratio of the acquisition system, this would diminish the neutron flux, enlarging the statistical dispersion. Moreover, a lengthening of the source-detector distance could be unfeasible due to engineering or radiological protection constraints. Other entities such as detector resolution, electronic noise and neutron scattering - unlike penumbra which Download English Version:

https://daneshyari.com/en/article/5492558

Download Persian Version:

https://daneshyari.com/article/5492558

Daneshyari.com