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a b s t r a c t

In the standard practice of neutron multiplicity counting , the first three sampled factorial moments of the event
triggered neutron count distribution are used to quantify the three main neutron source terms: the spontaneous
fissile material effective mass, the relative (𝛼, 𝑛) production and the induced fission source responsible for
multiplication.

This study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap
method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the
three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in
Ispra, Italy, sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well
counter.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the standard practice of Neutron Multiplicity Counting (NMC),
the first three sampled factorial moments of the event triggered neutron
count distribution are used in an inversion model to extract the spon-
taneous fission rate, the (𝛼, 𝑛) rate and the multiplication of the item. A
significant advantage of NMC over other nondestructive assay methods
is the relative transparency of structural materials to neutrons, making
it a useful method when sampling impure, poorly characterized items.

As in any experimental method, uncertainty estimation is an inherent
part of the measurement, and no result is complete without it. Yet, at
present, there is no comprehensive guide regarding how to estimate the
uncertainty of the measured mass using NMC.

Typically, ‘‘uncertainties’’ can be divide into three categories: un-
certainties in the physical parameters (such as detection efficiency, the
prompt fission multiplicity distributions etc.), systematic errors (due
to model assumptions – such as the single energy point model and
neglecting the delayed neutrons – or due to numeric methods) and the
statistical uncertainty due to the random nature of neutron counting
(and fractionally larger when sampling the higher moments).

From an operational point of view, understanding the statistical
error has high importance for two main reasons: first, sampling high
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moments of the count distribution is vulnerable to a large statistical
uncertainty. Second, out of all the uncertainty factors mentioned , the
statistical uncertainty is the only one the user can control by extending
the duration of the measurement.

The objective of the present study is to perform a comparison
between three methods for estimating the statistical uncertainty of the
estimated mass: the bootstrap method, propagation of variance through
moments and statistical analysis of cycle data.

The comparison was done experimentally. Each of the three methods
was implemented on a set of four NMC measurements, held at the
JRC-laboratory in Ispra, Italy, sampling four different Pu samples in
a Plutonium Scrap Multiplicity Counter (PSMC) well counter [1]. In
order to create a reference value, the measurement was repeated for
a sufficient number of times (30–90), and the statistical spread of the
repetitions was used as the reference value.

The paper is arranged in the following manner: Section 2 gives the
necessary background on NMC and give an overview of the paper.
Section 3 describes the different methods used to estimate the statistical
uncertainty. Section 4 describes the experimental setting and introduce
and explain the reference values used for comparison. Section 5 de-
scribes the experimental results, and Section 6 concludes.
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2. Neutron multiplicity counting

2.1. Neutron multiplicity counting and the SVM method

Most spontaneous fissile materials emit neutrons in a known rate
(per mass unit). Thus, in a system with a known detection efficiency, the
mass of the spontaneous fissile material is propositional to the average
count rate of the spontaneous fission neutrons in a known proportion.
However, such simple consideration only provides a partial solution,
since the count rate of the neutron detections is highly influenced by
two additional neutron sources: (𝛼, 𝑛) reactions in sample impurities, and
induced fissions (typically in the odd Plutonium isotopes). Moreover,
since the detection system is often based on 3He proportional counters
imbedded in a moderating medium, variations in the energy spectrum
between the different neutron sources have a negligible effect on the
counter efficiency or the die away time, and the neutrons cannot be
distinguished through energetic considerations.

On the other hand, since the three sources have a different statistical
nature, the contribution of each source can be quantified by measuring
higher moments of the count distribution. Such general considerations
are referred to as Neutron Multiplicity Counting (NMC) or Time Interval
Analysis (TIA).

Most spontaneous fissile materials emit neutrons in a known rate
(per mass unit). Thus, in a system with a known detection efficiency, the
mass of the spontaneous fissile material is propositional to the average
count rate of the spontaneous fission neutrons in a known proportion.
However, such simple consideration only provides a partial solution,
because the count rate of the neutron detections is highly influenced
by two additional neutron sources: (𝛼, 𝑛) reactions in sample impurities,
and induced fissions (typically in the odd isotopes). Moreover, since the
detection system is often based on 3He proportional counters imbedded
in a moderating medium, and all neutron sources have (more or less) the
same energetic spectrum, the neutrons cannot be distinguished through
energetic considerations. On the other hand, because the three sources
have a different statistical nature, the contribution of each source can be
quantified by measuring higher moments of the count distribution. Such
general considerations are referred to as NMC or time interval analysis.

The shift register method is routinely used in NMC [2], where the so
called Singles, Doubles and Triples rate are used to quantify the three
neutron sources. Other methods include the Random Trigger Interval
(RTI) method [3] and the Skewness–Variance–Mean (SVM) method [4].
Because all methods, eventually, sample the first three moments of the
count distribution (although through different random variables), all
methods are mathematically equivalent1 [5].

Since the outline of the present study is estimating the statistical
uncertainty in the observables – and the final mass result – our choice
is the SVM method, where the sampled quantities are very simple: the
first three central moments of the number of detections in consecutive
(fixed) gates.

In more detail, the SVM method is implemented in the following
manner: the measurement (of duration of 𝑇𝑡𝑜𝑡) is divided into 𝑁
consecutive gates of duration 𝑇 (where 𝑇 is typically on the order of
the system neutron die away time, and 𝑁 = 𝑇𝑡𝑜𝑡∕𝑇 ≫ 1). Denoting
the number of neutron detections in the 𝑘𝑡ℎ gate (1 ≤ 𝑘 ≤ 𝑁) by 𝑋𝑘,
the sample mean is given by 𝐸(𝑋) = 1

𝑁
∑𝑁
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(
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)32 . Once the sampling is done, the

1 The term ‘‘mathematically equivalent’’ refers to the fact that all methods share the
same physical interpretation and model assumptions (and the same statistical convergence
rate). But how the information is obtained may differ: different hardware, overlapping vs.
non overlapping gates, different accidental estimations, different dead time formulation
etc. The expectation for all methods will be the same even though the uncertainty might
not.

2 We use the notations 𝐸(𝑋), 𝑉 𝑎𝑟(𝑋)′𝑆𝑘(𝑋) rather that 𝐸(𝑋), 𝑉 𝑎𝑟(𝑋), 𝑆𝑘(𝑋) to distinct
between the sampled moments, and the theoretical moments, as would be sampled in a
infinite measurement.

generalized factorial neutron multiplicity moments – defined as the
factorial moments of the number of neutron emitted in an entire fission
chain starting with a single source event – are related to the sampled
moments by [4]:

𝐷𝐺,1 =
𝐸(𝑋)
𝑆𝑃𝑑𝑇

(2.1)
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where 𝑃𝑑 is the detection efficiency (the probability that an emergent
neutron will be detected), 𝑆 is the source rate—the number of source
events (spontaneous fissions or (𝛼, 𝑛)) per time unit and 𝜆 is the recip-
rocal of the detector system die away time, adopting the exponential
model.

Finally, the generalized factorial moments are used to quantify the
different neutrons sources through the so called ‘‘Bohnel Method’’ [6,7],
describing the generalized factorial moments in term of the following
parameters:

1. The spontaneous fission fraction 𝑈 : the fraction of the source that
is due to spontaneous fissions only3

2. The leakage multiplication factor 𝑀𝐿: the neutron leakage
multiplication factor, defined as the product between the total
multiplication and the probability of neutron leakage [8].

3. 𝐷𝑠𝑓 ,𝑛, 𝐷𝑖𝑓 ,𝑛 The 𝑛𝑡ℎ factorial moments of the neutron emission
distribution in a spontaneous/induced fission (respectively).

Denoting by 𝐷𝐺,𝓁 = 𝐷𝐺,𝓁(𝑈,𝑀𝐿) the 𝓁𝑡ℎ factorial moment of the
distribution of the number of neutron emitted in an entire fission ignited
by a single spontaneous source event, explicit formulas for 𝐷𝐺,𝓁 , (𝓁 =
1, 2, 3) in the prompt, point kinetics approximation are given by:

𝐷𝐺,1(𝑈,𝑀𝐿) = (𝑈 (𝐷𝑠𝑓 ,1 − 1) + 1)𝑀𝐿 (2.2)
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Eqs. (2.1) and (2.2) form a set of three (non linear) equations with
three unknowns. Once the set of equations is solved, the mass is
proportional to 𝑆 ×𝑈 , and the proportion coefficient is the reciprocal of
the spontaneous fission rate (per gram). When measuring 𝑃𝑢 samples,
the spontaneous fission rate is approximately 473.5 fissions per gram
per second [2].

2.2. Aim and motivation

In recent years, the use of NMC methods has seen constant growth,
becoming a standard tool in safety, safeguards and facility operations.
Thus, the need for a full uncertainty quantification is becoming more
important. In response, we see growing interest, both academic and
practical, in uncertainty quantification in NMC [9].

As stated, in the present study, we will restrict our discussions to the
third factor only: statistical uncertainty. Quantification of the statistical
uncertainty of the measurement variance in NMC, naturally, has been
studied before, and there are several publications regarding both the

3 If we denote by 𝑆𝑓 the spontaneous fission rate, and by 𝑆𝛼 the (𝛼, 𝑛) rate, then
𝑆 = 𝑆𝑓 + 𝑆𝛼 and 𝑈 = 𝑆𝑓 ∕(𝑆𝑓 + 𝑆𝛼 ).
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