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Abstract

The (viscous) anisotropic hydrodynamic approach, especially after perturbative inclusion of all residual viscous terms,
has been shown to dramatically outperform viscous hydrodynamics in several simplified situations for which exact
solutions exist but which share with realistic expansion scenarios the problem of large dissipative currents. We will
report on the present status of applying viscous anisotropic hydrodynamics in a highly efficient simulation of the full
three-dimensional quark-gluon plasma. Results from accelerated 3+1-dimensional viscous hydrodynamic simulations
using graphics processing units will be compared to the anisotropic frameworks.
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1. Introduction

Quantitative modeling of relativistic heavy ion collisions has dramatically improved in recent years.
Simulations include an initial state and pre-equilibrium model for the first ∼ 0.5 − 1 fm/c when the quark-
gluon plasma (QGP) is highly momentum anisotropic and far from thermalized, followed by viscous hydro-
dynamic simulations of the medium for the semi-isotropic and semi-thermal QGP for the next O(10) fm/c,
and finally a microscopic hadronic treatment of the reformed hadrons. One of the main uncertainties in
this chain is from the early evolution stage when the QGP is highly anisotropic and cannot be treated with
viscous hydrodynamics. This uncertainty is usually encapsulated in model parameters describing the ini-
tial state and early pre-equilibrium dynamics. To constrain these and other model parameters with the
help of experimental observables, these simulations are coupled with advanced statistical methods based on
Bayesian statistics [1, 2]. Since it is very computationally expensive to train these models to cover very
high-dimensional parameter spaces we optimize the simulations along two fronts: we (1) speed up the 3+1
dimensional fluid dynamic simulation by performing the calculations on graphics processing units (GPUs)
[3] and (2) limit the uncertainty from the early evolution stage by using the viscous anisotropic hydrody-
namic formalism [4] which accounts for the large momentum anisotropies at early times non-perturbatively
and thus allows one to start the hydrodynamic stage earlier. The viscous anisotropic formalism improves
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Number of grid points C/CPU CUDA/GPU Speedup
(ms/step) (ms/step)

128 × 128 × 32 7145.978 63.261 112.960
128 × 128 × 64 13937.896 123.527 112.833
128 × 128 × 128 30717.367 244.450 125.659
256 × 256 × 32 25934.547 236.593 109.617
256 × 256 × 64 57387.141 472.391 121.482
256 × 256 × 128 129239.959 939.340 137.586

Table 1. Performance results
of the C/CPU and CUDA/GPU
versions of CPU-VH and GPU-
VH by measuring the computer
time it takes to complete one full
RK step, averaged over 100 time
steps, at different spatial resolu-
tions.

upon leading-order anisotropic hydrodynamics (see [5] for a review) by also including previously neglected
residual components of the shear stress tensor through Isreal-Stewart-like perturbative transport equations.
The combination of these advances leads to faster and quantitatively more reliable dynamical simulations of
heavy ion collisions with fewer parameters.

2. GPU-accelerated (3+1)-dimensional second-order viscous hydrodynamics

Our implementation of second-order viscous relativistic fluid dynamics on graphics processing units
(GPU-VH) is described in [3]. This code has since been adapted to evolve the second-order anisotropic
hydrodynamic equations of motion, but not yet on GPUs. The performance of GPU-VH, at different spatial
resolutions, is measured via the time it takes to complete 100 full time steps. Table 1 compares performance
of GPU-VH on the GeForce GTX 980 Ti graphics card relative to the CPU-VH code run on the host machine
with a 2.6 GHz Intel Xeon CPU E5-2697 v3 using a single core. We observe speed-up factors of O(100).

3. (3+1)-dimensional second-order anisotropic hydrodynamics

Assuming negligible net baryon density, relativistic fluid dynamics is described by the conservation laws
for energy and momentum, ∂μT μν(x)= 0, complemented by relaxation-type evolution equations for the dis-
sipative flows. For anisotropic systems T μν can be decomposed with respect to the fluid four-velocity uμ and
the space-like four-vector zμ (defining the direction of the largest anisotropy, which for heavy-ion collisions
is the beam direction [5]), parametrized by uμ ≡ (u0, u1, u2, u3) = (uτ, �u⊥, uη) and zμ = γz(τu3, 0, 0, uτ/τ),
where γ−2

z ≡ 1 + u2⊥. Identifying the energy density E with its equilibrium form via Landau matching and
demanding that the longitudinal pressure in the direction of the anisotropy is equal to its “anisotropic equi-
librium” value [6], we can decompose the energy-momentum tensor as (indicating “anisotropic equilibrium”
quantities with an over-hat and Õ = O − Ô) [7]:

T μν = Euμuν − P⊥Δμν⊥ + P̂Lzμzν + 2W̃ (μ
⊥zz
ν) + π̃

μν
⊥ . (1)

Here, P̂L is the total longitudinal pressure, the transverse pressure P⊥ ≡ P̂⊥ + 3Π̃/2 is the sum of the
“anisotropic equilibrium” pressure P̂⊥ and the residual bulk viscous pressure Π̃, W̃μ⊥z ≡ −Δμ⊥,αTαβzβ is the
energy-momentum diffusion current in the z direction, and the transverse shear stress tensor is π̃μν⊥ ≡ T {μν}.
The transverse projection tensor Δμν⊥ ≡ gμν − uμuν + zμzν is used to project four-vectors and tensors into
the space orthogonal to uμ and zμ. By construction, the dissipative terms satisfy the constraints uμW̃

μ
⊥z =

zμW̃
μ
⊥z = uμπ̃

μν
⊥ = zμπ̃

μν
⊥ = gμνπμν ≡ 0.

To close the conservation laws, additional evolution equations for P̂L and Π̃ (entering in Eq. (1) through
P⊥), and for the residual dissipative currents W̃μ⊥z and π̃μν⊥ must be provided [7, 8]. In addition, we must
determine P̂⊥. In kinetic theory

P̂⊥ ≡ −1
2
Δ
μν
⊥ T̂μν =

1
2

(
E − P̂L − R̄(ξ)(E − 3P0)

)
, (2)

where the last term is the trace of the energy-momentum tensor. The R̄-function above depends only on
the leading order anisotropy of the system (measured by the macroscopic quantities E/P̂L); we take the
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