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Abstract

In this proceeding, we study the dynamical evolution of the sigma field within the framework of Langevin dynamics.
We find that, as the system evolves in the critical regime, the magnitudes and signs of the cumulants of sigma field, C;
and Cy4, can be dramatically different from the equilibrated ones due to the memory effects near 7. For the dynamical
evolution across the 1st order phase transition boundary, the supercooling effect leads the sigma field to be widely
distributed in the thermodynamical potential, which largely enhances the cumulants C3, Cy, correspondingly.
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1. Introduction

The STAR collaboration has measured the higher order cumulants of net protons in Au+Au collisions
with collision energy ranging from 7.7 to 200 GeV [1, 2, 3]. The experimental data of ko~ (K0'2 =Cy4/ Cg)
shows a large deviation from the poisson baseline, and presents an obvious non-monotonic behavior at lower
collision energies, indicating the potential of discovery the QCD critical point in experiment [3].

Within the framework of equilibrium critical fluctuations, we calculated the fluctuations of net protons
through coupling the fluctuating sigma field with particles emitted from the freeze-out surface of hydro-
dynamics [4]. Our calculations can fit the C; and ko> data by tuning the related parameters, as well as
qualitatively describing the acceptance dependence of the cumulants of net protons. However, our calcula-
tions over-predicted both C, and C3 data due to the positive critical fluctuations, which are in fact intrinsic
for the traditional equilibrium critical fluctuations [5, 6, 7].

Recently, Mukherjee and his collaborators have studied the non-equilibrium evolution for the cumulants
of sigma field in the critical regime, based on the Fokker-Plank equation [8]. The numerical results showed
that, as the system evolves near the critical point, the memory effects keep the signs of the Skewness and
Kurtosis at the early time, which are opposite to the equilibrium ones at the freeze-out points below 7.
However, their calculations focus on the zero mode of the sigma field, which has averaged out the spatial
information and can not directly couple with particles to compare with the measured experimental data.

To solve this problem, one could directly trace the whole space-time evolution of the sigma field within
the framework of Langevin dynamics. In this proceeding, we will present the main results from our recent
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numerical simulations of the Langevin equation of the sigma field, using an effective potential of the linear
sigma model with constituent quarks. As discovered in early work [8], we also observe clearly memo-
ry effects as the system evolves in the critical regime, which largely influence the signs and values of the
cumulants C3 and C;. In addition, we find that for the dynamical evolution across the 1st order phase transi-
tion boundary, the supercooling effect leads the sigma field to be widely distributed in the thermodynamical
potential, which largely enhances the corresponding cumulants C, — C4 at the freeze-out points.

2. The formalism and set-ups

In this proceeding we focus on the dynamical evolution of the order parameter field within the frame-
work of the linear sigma model with constituent quarks. According the the classification of the dynamical
universality classes [9], our approach belongs to model A, which is not in the same dynamical universali-
ty class of the full QCD matter evolution [10], but easy for numerical implementations. The linear sigma
model is an effective model to describe the chiral phase transition, which presents a complete phase diagram
on the (7, ) plane with different phase transition scenarios, including a critical point [11, 12]. As the mass
of the sigma field vanishes at the critical point, the related thermodynamical quantities become divergent
due to the critical long wavelength fluctuations of the sigma field. In the critical regime, the semi-classical
evolution of the long wavelength mode of the sigma field can be described by a Langevin equation [13]:
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where 7 is the damping coefficient and £ (¢, x) is the noise term. Both of these two terms come from the
interaction between the sigma field and quarks [13]. Here we take 7 as a free parameter, and input white
noise in the calculation. The effective potential of the sigma field is written as:
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where U (o) is the vacuum potential of the chiral field, and the related values of A, o, h, and Uy are set by
the vacuum properties of hadrons. Note that here we have neglected the fluctuations of 7, since its mass is
finite in the critical regime. Qg, represents the contributions from thermal quarks, which has the form:
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where d, is the degeneracy factor of quarks, and the energy of the quark is E = /p> + M (0)%. Here we
introduce an effective mass for the quark, M (07) = mg + go [4, 6]. After the chiral phase transition, quarks
obtain effective mass and turn to constituent quarks. Based on the effective potential Eq. (2), one can obtain
the corresponding phase diagram in the (7', 1) plane, which is plotted in the left panel of Fig. 1.

For the numerical implementations, we first construct the profiles of the initial sigma field according
to the probability function P [0 (x)] ~ exp(—& (o) /T) (where (o) = f dx [% Vo ()c))2 + Ve (0 (x))]),
then evolve the sigma field event by event through solving the Langevin equation Eq.(1). With the obtained
space-time configurations of the sigma fields, the moments of the sigma field can be calculated as:
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where o = \l, f d*xo (x). The cumulants of sigma field can be obtained from these above moments.

Note that numerically solving Eq.(1) also needs to input the space-time information of the local temper-
ature and chemical potential, T'(¢, x,y, z) and u(z, x, v, z), for the effective potential, which are in principle
provided by the evolution of a back-ground heat bath. For simplicity, we assume that the heat bath evolves
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