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By regarding the Einstein equations as equation(s) of state, we demonstrate that a full cohomogeneity 
horizon first law can be derived in horizon thermodynamics. In this approach both the entropy and 
the free energy are derived concepts, while the standard (degenerate) horizon first law is recovered by 
a Legendre projection from the more general one we derive. These results readily generalize to higher 
curvature gravities where they naturally reproduce a formula for the entropy without introducing Noether 
charges. Our results thus establish a way of how to formulate consistent black hole thermodynamics 
without conserved charges.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The discovery that spacetimes with horizons can be well de-
scribed by thermodynamic laws [1–3] has led to much speculation 
about the thermodynamic meaning of gravitational field equa-
tions [4–6]. Among these, the concept of horizon thermodynam-
ics emerged from the discovery that Einstein’s equations on the 
black hole horizon can be interpreted as a thermodynamic iden-
tity [7]. First formulated for spherically symmetric black holes in 
Einstein gravity, horizon thermodynamics has since been extended 
to higher curvature gravities [8,9], time evolving [10,11] and rotat-
ing [10,12] black hole horizons, or even general null surfaces [13]. 
These notions have been extended to Horava–Lifshitz gravity [14], 
massive gravity [15], and to cosmological horizons [16].

The key idea of horizon thermodynamics is to realize that the 
radial Einstein equation1, when evaluated on the black hole hori-
zon, assumes the suggestive form

P = P (V , T ) , (1)

or in other words an horizon equation of state, which comes by mak-
ing an assumption that the radial component of the stress-energy 
tensor serves as a thermodynamic pressure, P = T r

r |r+ , the tem-
perature is identified with the Hawking temperature, T = T H , and 
the horizon is assigned a geometric volume V = V (r+) [17,18].

By considering a virtual displacement of the horizon [7], the 
horizon equation of state can be rewritten as a horizon first law
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δE = T δS − PδV , (2)

where S stands for the horizon entropy and E is identified as a 
quasilocal energy of the black hole. For example, in Einstein gravity 
E turns out to be the Misner–Sharp energy [19] and the obtained 
horizon first law (2) is a special case of the ‘unified first law’ dis-
cussed by Hayward [5].

While these results are rather suggestive, there are several is-
sues in this procedure that arise upon further inspection. First, in 
the original derivation, it was unclear which thermodynamic vari-
ables were derived and which needed to be independently speci-
fied. The focus was previously on the provocative relation hidden 
within the Einstein equations when the appropriate identifications 
were made. Consequently this procedure provides no direct algo-
rithmic method to derive thermodynamic properties of a space-
time where appropriate identifications are yet unknown, and has 
instead been used as means of highlighting the presence of known 
thermodynamics in the gravitational field equations.

The second issue concerns the restriction to virtual displace-
ments δr+ of the horizon radius. This renders the first law (2)
to be of ‘cohomogeneity-one’, since both S and V are functions 
only of r+ . Indeed (2) could just as well be written as δE =
(T S ′ + P V ′)δr+ , with primes denoting differentiation with respect 
to r+ . This yields an ambiguity between ‘heat’ and ‘work’ terms 
and leads to a ‘vacuum interpretation’ of the first law (2) [12].

Here we show that both of the above dilemmas can be avoided. 
The key idea is to vary the horizon equation of state (1), treating 
the pressure P and temperature T as independent thermodynamic 
quantities. This results in a new horizon first law

δG = −SδT + V δP , (3)
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which is manifestly non-degenerate and of cohomogeneity-two. 
Moreover, upon specifying the volume, pressure, and temperature, 
the horizon entropy S is now a derived concept and so is the Gibbs 
free energy G . The standard horizon first law (2) can be recovered 
a-posteriori, by applying a degenerate Legendre transformation,

E = G + T S − P V . (4)

This new derivation implies that horizon thermodynamics has con-
siderable utility, and provides further evidence that gravitational 
field equations can indeed be understood as an equation of state.

We begin our discussion by briefly reviewing the traditional 
cohomogeneity-one approach to horizon thermodynamics in four-
dimensional Einstein gravity [7], emphasizing which quantities are 
assumed and which can be obtained as an output. Throughout we 
employ the units in which G = c = h̄ = 1. Consider a static spheri-
cally symmetric black hole spacetime described by the geometry

ds2 = − f (r)dt2 + dr2

g(r)
+ r2d�2 , (5)

with a non-degenerate horizon located at r = r+ , determined as 
the largest positive root of f (r+) = 0. We begin by concentrating 
on the case when f (r) = g(r). Assuming minimal coupling to the 
matter, with the stress energy tensor Tab , the radial Einstein equa-
tion evaluated on the horizon reads

8π T r
r |r+ = Gr

r |r+ = f ′(r+)

r+
− 1 − f (r+)

r2+
, (6)

where primes denote differentiation with respect to r. Identifying

P = T r
r |r+ , T = f ′(r+)

4π
, (7)

as the respective pressure and temperature yields

P = T

2r+
− 1

8πr2+
, (8)

which is the horizon equation of state (1). Multiplying this by 
4πr2+δr+ then gives

δr+
2

= T δS − PδV , (9)

which is the horizon first law (2), provided we either identify any 
one of the three quantities

V = 4

3
πr3+ , S = A

4
= πr2+ , E = r+

2
, (10)

as the volume, entropy, and energy respectively, assuming the lat-
ter is a function only of r+ . Identification of the remaining quan-
tities logically follows from (2). Regardless, the obtained first law 
(2) is cohomogeneity one, as its every term varies solely with r+ , 
and suffers from the ambiguity of defining independent heat and 
work terms. However the degree of cohomogeneity in the HFL is a 
consequence of the procedure chosen and not intrinsic to horizon 
thermodynamics itself as we shall now demonstrate.

The identification of the temperature T as in (7) is via standard 
arguments in thermal quantum field theory; it does not require 
any gravitational field equations. By definition the pressure is iden-
tified with the matter stress-energy as in (7). With this information 
the radial Einstein equation can be rewritten as

P = B(r+) + C(r+)T , (11)

where B and C are some known functions of r+ that in general 
depend on the theory of gravity under consideration, as does the 
linearity of the equation of state in the temperature T . Formally 
varying the generalized equation of state (11), we obtain

V δP = V
(

B ′ + C ′T
)
δr+ + V CδT , (12)

upon multiplication by the geometric volume, V (r+), assuming all 
other parameters are fixed. It is now straightforward to rewrite this 
equation as

V δP = SδT + δG , (13)

where

G =
r+∫

dxV (x)B ′(x) + T

r+∫
dxV (x)C ′(x)

= P V − ST −
r+∫

dxV ′(x)B(x) , (14)

S =
r+∫

dxV ′(x)C(x) ,

using integration by parts. Since (by postulate) we have identi-
fied T with temperature, P with pressure, and V with volume, we 
therefore conclude that S is the entropy and G is the Gibbs free en-
ergy of the black hole. Note that these are derived quantities from 
the premises (7), and the field equations that yield (11), along with 
the assumption that the volume does not depend on T .

The relation (13) for the Gibbs free energy G = G(P , T ) is the 
cohomogeneity-two horizon first law (3), where P and T are in-
dependent quantities. It is valid for any gravitational theory whose 
field equations yield a linear relation between pressure and tem-
perature. Note that since G depends on the matter content only 
implicitly (via P and T ) it characterizes the gravitational theory. 
This is the origin of recently observed ‘universality’ of the corre-
sponding phase behavior [20].

We can define the horizon enthalpy by the associated Legendre 
transformation H = H(S, P ) = G + T S , and recover

δH = T δS + V δP , (15)

which is another non-degenerate horizon first law. Likewise we 
can employ the Euler scaling argument, e.g. [21], to obtain

H = 2T S − 2V P , (16)

which is the accompanying (four-dimensional) Smarr relation.
We can also make the degenerate Legendre transformation (4), 

whose degeneracy originates in the fact that S and V both being 
functions of r+ are not independent quantities, and obtain so the 
‘old’ cohomogeneity-one horizon first law (2).

Specifying to Einstein gravity in four dimensions, it is straight-
forward to identify B(r+) = −(8πr2+)−1 and C(r+) = 1/(2r+) from 
(8), yielding from (14)

S = πr2+ , G = r+
3

(1 − πr+T ) , (17)

using the geometric definition (10) of the volume. This Gibbs free 
energy was previously derived and its phase diagrams studied in 
[20,22]; it is understood as G = G(P , T ) through the equation of 
state r+ = r+(P , T ), (8). Performing the degenerate Legendre trans-
formation, (4), one finds E = r+

2 , in accordance with the previous 
approach.

We emphasize that the derivation of (13) depends only on the 
generalized equation of state having the form (11). At no point was 
it necessary to use the specific form of the volume V (r+). Con-
sequently this new approach to horizon thermodynamics readily 
extends to higher dimensions and higher-curvature gravities. Let 
us demonstrate this for black holes in Lovelock gravity.

Lovelock gravity [23] is a geometric higher curvature theory 
of gravity that can be considered as a natural generalization of 
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