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Recently there has been a growing interest in quantum gravity theories with more than four derivatives, 
including both their quantum and classical aspects. In this work we extend the recent results concerning 
the non-singularity of the modified Newtonian potential to the most relevant case in which the 
propagator has complex poles. The model we consider is Einstein–Hilbert action augmented by curvature-
squared higher-derivative terms which contain polynomials on the d’Alembert operator. We show that the 
classical potential of these theories is a real quantity and it is regular at the origin despite the (complex 
or real) nature or the multiplicity of the massive poles. The expression for the potential is explicitly 
derived for some interesting particular cases. Finally, the issue of the mechanism behind the cancellation 
of the singularity is discussed; specifically we argue that the regularity of the potential can hold even if 
the number of massive tensor modes and scalar ones is not the same.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The twentieth century has brought two fundamental ideas to 
Physics: the curved space–time and the quantization of matter. In 
spite of the great success each of these insights has achieved owed 
to the outstanding experimental verification of general relativity 
and quantum field theory, no fully consistent way of combining 
both paradigmatic theories is known. Since the 1960’s it is known 
that the renormalization of quantum fields on curved space–time 
using perturbative methods requires introducing the curvature-
squared terms R2, R2

μν and R2
μναβ which violate the unitarity of 

the theory [1]. The situation is no better when gravity itself is 
quantized — for example, the gravity model with fourth-derivative 
terms is renormalizable, but has negative-norm states [2]. Con-
ciliating unitarity and renormalizability is one of the main prob-
lems in quantum gravity and has motivated the search for theories 
which relied on fundamentally different basic principles, such as 
string theory.

Nonetheless, within the framework of standard quantum field 
theory, the introduction of terms of order two in curvature but 
with more than four derivatives has shown to make the theory 
superrenormalizable [3] and also allowed for the possibility of pro-
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viding a unitary S-matrix [4]. In fact, in this case the associated 
propagator may admit massive complex poles; such virtual modes 
would have complex kinetic energy, being unstable and leading to 
a unitary theory à la Lee–Wick [4,5].

Renormalizability in gravity might be related to the behaviour 
of the classical interparticle potential of the model [6]; indeed 
there is a conjecture which states that renormalizable gravity the-
ories have a finite non-relativistic potential at the origin [7]. This 
relation was first noticed in Stelle’s seminal works [2,8] which 
showed that the fourth-derivative gravity is renormalizable, and 
has a regular potential. More recently, there have been interesting 
investigations on this conjecture in massive gravity models, and 
also in theories with dimensions different than four (see [7] and 
references therein).

In a recent paper [6] Modesto, Paula Netto and Shapiro moved 
a step further on this discussion with the generalization of Stelle’s 
result so as to account for a class of superrenormalizable particular 
cases of the model defined by the action1 [3]

1 The cosmological constant is omitted because it does not affect the regularity of 
the classical potential, besides being very small. Of course, the corresponding term 
is necessary to the renormalization of the theory. Our sign convention is to define 
the Minkowski metric as ημν = diag(1, −1, −1, −1), while the Riemann and Ricci 
tensors are Rρ

λμν = ∂μ	ρ
λν + · · · and Rμν = Rρ

μνρ . To simplify notation we set 
h̄ = c = 1.
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Sgrav =
∫

d4x
√−g

(
2

κ2
R + R F̃ (a)

1 (�)R

+ Rμν F̃ (b)
2 (�)Rμν + Rμναβ F̃ (c)

3 (�)Rμναβ

)
, (1)

where κ2 = 32πG and F̃ ( j)
i (�) are polynomials of degree j ≥ 0

on the d’Alembert operator. We recall that the condition a = b = c
makes the model renormalizable,2 and that it becomes superrenor-
malizable if a = b = c ≥ 1. The analysis in [6] was restricted to 
the (super)renormalizable case with the additional constraint that 
the polynomials F̃ ( j)

i yielded only simple, real poles in the prop-
agator. The main result they obtained was another verification of 
the aforementioned conjecture, showing that this model has a fi-
nite classical potential at the origin: the massive tensor and scalar 
modes contribute in such a manner to precisely cancel out the 
Newtonian singularity. Also, it was suggested that this happens not 
only because of a particular balance between the attractive forces 
owed by the healthy modes and the repulsive ones related to the 
ghosts, but also due to a specific matching of the number of ten-
sor and scalar modes. Namely, they conjectured that if the number 
of these massive excitations is not the same (which is related to 
having polynomials F̃ ( j)

i of different orders and, therefore, losing 
renormalizability), the potential would not be regular.

In the present work we extend the result of [6] to the most 
general and more interesting case in which the massive poles 
of the propagator are complex, and may have degeneracies. We 
show that the action (1) always yields a real, regular potential at 
the origin — disregard the number, the nature (complex or real) 
and order of the massive poles. As a consequence, the mecha-
nism which allows the cancellation of the Newtonian singularity 
is broader than the one proposed in [6].

To close this introductory section, it is worthwhile to mention 
that there exists a connection between the polynomial action (1)
and the infinite-derivative “ghost free” gravity [9] (see, for instance, 
Refs. [10] for recent studies on singularities in the latter model). 
In fact, it was argued in [11] that the quantum corrections to the 
non-local classical model would lead to an infinite amount of com-
plex ghost-like states, making the study of the polynomial gravity 
mandatory — with a special interest to the case of complex poles. 
In particular, it was conjectured that the cancellation of the Newto-
nian singularity in the non-local model could be owed to the effect 
of an infinite number of “hidden” complex excitations [11]; the 
present work can be viewed as a step towards this result. Finally, 
it is good to remember that singularities (of both black hole type 
and cosmological) constitute a central topic in gravitational physics 
and one of the main reasons for quantum gravity. Hence it is im-
portant to explore the classical singularities in the new promising 
quantum gravity model (1). The influence of fourth derivatives has 
already been investigated in the context of black holes [12] and 
cosmological solutions [13]. Inasmuch as the general polynomial 
theory is more complicated than Stelle’s gravity, it is sound to start 
from the Newtonian case, as it is done in the present work. Other 
investigations on the low-energy phenomenology of (super)renor-
malizable higher-derivative local theories are carried out in [14]
and in the parallel works [15,16].

2. Real potential with complex poles

The classical potential of a gravitational theory is computed by 
considering the metric to be a small fluctuation around the flat 
space–time, gμν = ημν + κ2hμν , and approximating the geomet-
ric quantities by their linearized forms. The quadratic terms in the 

2 The case a = b = c = 0 corresponds to Stelle’s renormalizable model [2].

Riemann tensor need not to be considered in the linear approxi-
mation, because the relation (p ∈ N)∫

d4x
√−g

(
R�p R − 4Rμν�p Rμν + Rμναβ�p Rμναβ

) = O(h3)

means that at this level there are only two independent quan-
tities among the scalars R�p R , Rμν�p Rμν and Rμναβ�p Rμναβ

(see, e.g., [3]). Hence, we may substitute the polynomials F̃ ( j)
i by 

F (p)
1 ≡ F̃ (a)

1 − F̃ (c)
3 , F (q)

2 ≡ F̃ (b)
2 + 4 F̃ (c)

3 and F3 ≡ 0, which simplifies 
the Lagrangian associated with the action (1) leading to

Lgrav = √−g

(
2

κ2
R + R F (p)

1 (�)R + Rμν F (q)
2 (�)Rμν

)
, (2)

where p = max{a, c} and q = max{b, c}.
We note that, via the substitution ∂μ �−→ −ikμ , each F ( j)

i (�)

corresponds to a polynomial F ( j)
i (−k2) in the momentum space 

representation. Let us now define the polynomials

Q 0(k
2) = 1 − κ2k2

[
F (q)

2 (−k2) + 3F (p)
1 (−k2)

]
,

Q 2(k
2) = 1 + κ2k2

2
F (q)

2 (−k2) ,

(3)

respectively of order n0 = 1 + max{p, q} and n2 = q + 1 on k2. It is 
not difficult to verify that in the de Donder gauge the momentum 
space representation of the propagator associated to (2) is given in 
terms of Q 0 and Q 2 as

D = 1

k2 Q 2
P (2) − 1

2k2 Q 0
P (0−s) + 2λ

k2
P (1)

+
[
− 3

2k2 Q 0
+ 4λ

k2

]
P (0−w) +

√
3

2k2 Q 0

[
P (0−sw) + P (0−ws)

]
.

(4)

Here λ is a gauge parameter, and P (2) , P (0−s) , etc. are the usual 
Barnes–Rivers operators [17], whose indices have been omitted. 
The masses of the propagated fields correspond to the poles of (4), 
which turn out to be the roots of Q 0,2. According to the fundamen-
tal theorem of algebra, there are n0 massive modes of spin-0, and 
n2 massive spin-2 modes (complex roots and degeneracies may oc-
cur depending on the coefficients of the polynomials). Therefore, it 
is more useful to rewrite these polynomials in the factored form

Q i(k
2) = (m2

(i)1 − k2)(m2
(i)2 − k2) · · · (m2

(i)ni
− k2)

m2
(i)1m2

(i)2 · · ·m2
(i)ni

. (5)

The poles of the propagator (4) are defined as m2
(i) j , or ±m(i) j if we 

consider that the polynomial is on k. The index i = 0, 2 between 
parentheses labels the spin of the particle associated to the jth
excitation.

The field hμν generated by a point-like mass M in rest, 
Tμν(r) = Mημ0ην0δ

(3)(r), can be evaluated by means of the 
Fourier transform method [5,6] or via an auxiliary field formu-
lation as in [15]. The classical potential φ is then proportional to 
h00, namely, φ = κ2

2 h00. It can also be computed following the 
scheme of [18]. All in all, it is possible to show that the (modified) 
Newtonian potential is given by

φ(r) = − iGM

πr

+∞∫
−∞

dk

k
eikr

(
4

3Q 2(−k2)
− 1

3Q 0(−k2)

)
. (6)
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