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Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, 
including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydro-
dynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydro-
dynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with 
sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their 
corresponding critical sizes, which are determined by the physical properties and boundary temperatures. 
The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear 
heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the 
phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of 
violating the second law and multiplicity. Comparisons are also made between these non-Fourier models 
and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited 
behaviors.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As a phenomenological model, Fourier’s law of heat conduc-
tion has been proved by numerous experiments and widely used in 
engineering. It describes a constitutive relation between the tem-
perature gradient and heat flux

q = −λ∇T , (1)

where q is the heat flux, λ is the thermal conductivity and T is the 
temperature. In statistical mechanics, Fourier’s law has been de-
rived approximately through several given theoretical assumptions, 
which also implies its possible restrictions, i.e., near-equilibrium 
region. Especially in nanoscale heat transport [1–6], the effects of 
far-from-equilibrium can play an important role because the char-
acteristic size can be comparable to the mean free path of heat 
carriers. The non-Fourier effects in nanoscale can be classified into 
three types [7]: relaxation, nonlocality and nonlinearity. Relaxation 
in heat conduction is first introduced by the Cattaneo–Vernotte 
(CV) model [8,9], whose hyperbolic governing equation predicts a 
finite wave velocity of heat propagation. It should be noted that in 
non-linear Fourier heat conduction [12,13], there also exist hyper-
bolic or wave-like characteristics. For instance, fast (superfast) dif-
fusion [14], where λ = λ(T ) ∝ T −α (0 < α < 2 is a constant), also 
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has the travelling wave solution T (x, t) = T1(x − Ut) + T2(x + Ut)
with a finite wave velocity U . Thus, hyperbolic or wave-like charac-
teristics are not enough to distinguish non-Fourier relaxation mod-
els and Fourier’s law. In the spirit of relaxation, the CV model has 
been generalized to different non-Fourier models, i.e., the Jeffrey 
model [10,11], a linear superposition of the CV and Fourier heat 
conductions. The constitutive relations of these relaxation models 
can usually be summarized as memory behaviors [10,11], where 
the heat flux is depended on the integrated history of the temper-
ature gradient. Different constitutive models can be given through 
different choices of the integral kernels. Most of the memory ker-
nels are exponential type or Dirac delta function (or their lin-
ear superposition) [10,11]. Power-law kernels can also be applied, 
which will lead to fractional differential operators [15,16]. The hy-
perbolic heat conduction models, i.e., the CV model, might predict 
non-positive values of the absolute temperature which seems un-
physical. Recently, hyperbolic heat conductions paired with this 
behavior have been further discussed by introducing a new class 
of stochastic processes [17,18], generalized Poisson–Kac processes. 
The nonlocal and nonlinear effects are mainly found in the models 
related to phonon hydrodynamics [19,20]. Most of these models 
are on the basis of phonon Boltzmann transport equation and re-
laxation approximations, while the thermon gas model [21–24]
takes a different method, which considers Einstein’s mass–energy 
relation in phonon hydrodynamics. The second spatial derivatives 
of the heat flux including ∇2q and ∇(∇ • q) [19,20] are the most 
common nonlocal terms. For steady-state cases, the relaxation 
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terms will disappear as ∂
∂t = 0 but nonlocality might still exist due 

to ∇2q �= 0, which means that the nonlocal models would not re-
duce to Fourier’s law.

In contrast with relaxation and nonlocality, nonlinearity, which 
might be unignorable in nanoscale heat transport, is not much 
studied [25–29]. The nonlinear effects predict significant and in-
teresting phenomenon, i.e., flux-limited behavior [29], where the 
heat flux tends to a finite upper bound with the temperature 
gradient increasing. The flux-limited behaviors in heat conduction 
caused by nonlinearity have been well discussed and reviewed by 
Guo et al. [25]. They have summarized the nonlinear models with 
flux-limited behaviors into three categories according to their the-
oretical foundations: phonon hydrodynamics, nonequilibrium ther-
modynamics, and phenomenological methods. These models ex-
pressed by the local temperature and heat flux distributions aim at 
providing constitutive relations for nanoscale heat transport. How-
ever, from the viewpoint of physics, it is obvious that they cannot 
be applied to the heat conduction problem with arbitrarily small 
size because the definitions of the local temperature and heat flux 
will be debatable or even undefinable for sufficiently small size. 
Therefore, besides the value of the heat flux varying along with 
the increasing temperature gradient, the applicable size of a heat 
conduction model should also be limited, which remains an open 
question.

In this work, it is found that this limitation of size can also be 
predicted by the nonlinear regime in the models with flux-limited 
behaviors, mainly including the phonon hydrodynamic [30,31] and 
Lagrange multiplier [32] models. For 1D steady-state heat conduc-
tion, where flux-limited behaviors are usually discussed, there will 
exist a critical size determined by the boundary temperatures, and 
the heat flux will exist only when the size is larger than the critical 
size. The critical sizes of these non-linear models can be regarded 
as the theoretical limits of their applicable ranges. The size and 
boundary effects for the existence of heat flux show different fea-
tures from Fourier heat conduction, which can always guarantee 
the existence of heat flux for arbitrary boundary temperatures and 
size. It means that even in the limit of small heat flux (or small 
temperature gradient), these non-Fourier models with flux-limited 
behaviors will not reduce to Fourier’s law and the nonlinear effects 
could not be negligible.

2. Critical size for heat flux in non-Fourier heat conduction

The flux-limited behaviors are mainly discussed for 1D steady-
state boundary value problems in [0, l] [25–29], where T |x=0 = T1
and T |x=l = T2 (without loss of generality, T1 < T2). In 1D steady-
state problems, the heat flux the heat flux reduces to a constant 
scalar q = −C and in consideration of T1 < T2, only positive C can 
satisfy the second law (the positive direction of the coordinate is 
from x = 0 to x = l).

2.1. Phonon hydrodynamic model

We start from the phonon hydrodynamic model [30,31], which 
is derived from Callaway’s relaxation approximation and maximum 
entropy principle

q + τR
∂q

∂t
+ λ∇T

= −τR∇ •
(

3v g〈qq〉
2v gcV T +

√
4v2

gc2
V T 2 − 3q2

)
, (2)

where 〈qq〉 is the deviatoric part of tensor qq, τR is the relax-
ation time of phonon resistive scattering, v g is the average phonon 
group speed and cV is the heat capacity per unit volume. In 

1D steady-state heat conduction, the governing equation of the 
phonon hydrodynamic model can be simplified to

C = λ

[
5 − 4√

1 − ( √
3C

2v g cV T

)2

]
dT

dx
. (3)

In 1D steady-state problems, Eq. (3) is derived from Eq. (2), which 
can be found in Ref. [25] (see Eqs. (9)–(11) of Ref. [25]). From 
Eq. (3), it is obvious that the upper bound of the heat flux should 
be limited |C | < 2v g cV T√

3
in mathematics. What’s more, the second 

law of thermodynamics requires a non-negative effective thermal 
conductivity λ[5 − 4√

1−( √
3C

2v g cV T

)2
] ≥ 0, which will give a smaller 

upper bound |C | ≤ 2
√

3
5 v gcV T . Similar upper bounds determined 

by v gcV T can also be found in other models. The correspond-
ing physical meaning is that the heat flux cannot be higher than 
the product of the energy density cV T and the maximum phonon 
speed sup(v g). The relation between the boundary temperatures 
and heat flux can be given by the integration of Eq. (3)

5(T2 − T1) − 4

[√
T 2

2 −
( √

3C

2v gcV

)2

−
√

T 2
1 −

( √
3C

2v gcV

)2]

= Cl

λ
. (4)

In the cases of C > 0, set 
√

3|C |
2v g cV

= u1 (0 ≤ u1 ≤ T1) and Eq. (4) is 
then rewritten as

5(T2 − T1) − 4
(√

T 2
2 − u2

1 −
√

T 2
1 − u2

1

)
= 2v gcV l√

3λ
u1. (5)

To determine the existence of u1 in [0, T1], an auxiliary function is 
introduced as follows

f1(u1) = 5(T2 − T1) − 4
(√

T 2
2 − u2

1 −
√

T 2
1 − u2

1

)
− 2v gcV l√

3λ
u1, (6)

whose first-order derivative is

df1(u1)

du1
= 4u1

(
1√

T 2
2 − u2

1

− 1√
T 2

1 − u2
1

)
− 2v gcV l√

3λ
. (7)

For T2 > T1, we have df1(u1)
du1

< 0 and hence, there is at most one 
solution. Due to f1(0) = (T2 − T1) > 0, the existence of u1 in 
[0, T1] needs

f1(T1) = 5(T2 − T1) − 4
√

T 2
2 − T 2

1 − 2v gcV l√
3λ

T1 ≤ 0, (8)

but inequality (8) is not necessarily satisfied, i.e., limT1→0 f1(T1) →
T2 > 0. In order to guarantee the existence of heat flux, the size 
should satisfy the following inequality

l ≥ lc1 =
√

3λ

2v gcV

[
5

(
T2

T1
− 1

)
− 4

√
T 2

2

T 2
1

− 1

]
. (9)

When 1 < T2
T1

≤ 41
9 , we find lc1 ≤ 0 and therefore, inequality (9) al-

ways holds, which means that the heat flux of this case must exist. 
For 41

9 <
T2
T1

, lc1 is positive and only when the size is larger than 
lc1, the heat flux will exist. Accordingly, a size effect about the ex-
istence of heat flux is found for 41

9 < T2
T1

. lc1, which is determined 
by the ratio of boundary temperatures, can be regarded as a critical 
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