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The swarm oscillator model describes the long-time behavior of interacting chemotactic particles, and 
it shows numerous types of macroscopic patterns. However, the reason why so many kinds of patterns 
emerge is not clear. In this study, we elucidate the mechanism underlying the diversity of the pattens 
by analyzing the model for two particles. Focusing on the behavior when the two particles are spatially 
close, we find that the dynamics is classified into eight types, which explain most of the observed 13 
types of patterns.

© 2017 Published by Elsevier B.V.

1. Introduction

There are various systems in which elements interacting with 
each other spontaneously form macroscopic behavior or structure. 
Such phenomena are termed self-organization or self-assembly [1,
2]. Numerous theoretical studies have been conducted to under-
stand the mechanism underlying these phenomena [3–6].

The swarm oscillator (SO) model is a theoretical model for a 
many-particle system that exhibits self-organization [7]. Specifi-
cally, the model describes the long-time asymptotic behavior of a 
group of particles with capacity for chemotaxis. In nature, chemo-
taxis is typically observed in living cells, and therefore, the particle 
in the model might be a simplified representation of a chemotactic 
cell. In fact, it was recently shown that the mechanism incor-
porated in the model particle well describes the motion of real 
Dictyostelium cells [8].

A remarkable feature of the SO model is the diversity of the 
macroscopic patterns that it can produce. Thirteen kinds of pat-
terns are observed in numerical simulations, when only two pa-
rameters in the model are varied [9]. However, the origin of such 
diverse patterns remains unclear. The linear stability analysis of the 
two-particle system revealed that only two qualitatively different 
types of dynamics occur due to bifurcation [10], which apparently 
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are not enough to explain the variety of observed macroscopic pat-
terns.

In this study, we explain the many macroscopic patterns emerg-
ing from the SO model by analyzing the two-particle system from 
a different viewpoint. Specifically, we focus on the dynamics when 
the two particles are close to each other. Consequently, we find 
that the dynamics is qualitatively classified into eight types. By in-
vestigating each type, we can predict which pattern emerges under 
most of the parameter combinations. Hence, these results reveal 
why the various collective patterns emerge in the SO model.

2. Swarm oscillator model

The SO model is derived to describe the long-time behavior of 
chemotactic particles that secrete a chemical substance almost pe-
riodically [7], as reviewed briefly below. The governing equations 
in the original model for chemotactic particles are as follows:

Ẋ i(t) = f (X i) + kg(S(ri, t)), (1)

mr̈i(t) = −γ ṙi − σ(X i)∇ S(ri, t), (2)

τ St(r, t) = −S + d∇2 S +
∑

i

h(X i)δ(r − ri), (3)

which produce the time evolution of the internal state X i(t), the 
position ri(t) of the i-th chemotactic particle, and the chemical 
concentration S(r, t). The internal state is assumed to exhibit a 
spontaneous limit-cycle oscillation, which originates from f and is 
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also affected by the chemical through g . The motion of the parti-
cles is driven by the gradient of the chemical concentration, ∇ S , 
with the sensitivity σ depending on the internal state in the pres-
ence of a friction force. The chemical substance, which diffuses and 
dissipates, is emitted by each particle with the emission rate h
depending on the internal state. k, m, γ , τ and d are constant pa-
rameters.

The above equations are reduced to the equations for phase os-
cillators, namely the SO model using the following assumptions 
[7]: the phase reduction for the limit-cycle oscillation [11]; lin-
earization of g , σ , and h; averaging the oscillating behavior, which 
occurs at the same time scale as that of the internal state, and ne-
glecting the fast damping due to the friction and dissipation. The 
equations for the SO model are:

ψ̇i =
∑

{ j| j �=i}
e−∣∣R ji

∣∣
sin

(
� ji + α

∣∣R ji
∣∣ − c1

)
, (4)

ṙi = c3

∑
{ j| j �=i}

R̂ jie
−∣∣R ji

∣∣
sin

(
� ji + α

∣∣R ji
∣∣ − c2

)
. (5)

Here, ψi (mod 2π ) and ri represent the phase and position of 
the i-th particle, respectively. R ji := r j − ri , R̂ ji := R ji/|R ji |, and 
� ji := ψ j − ψi . The SO model has four parameters: 0 ≤ c1 < 2π , 
0 ≤ c2 < 2π , 0 ≤ c3, and 0 ≤ α.

Among these parameters, c1 and c2 are expected to influence 
the macroscopic behavior more strongly than the others. This is 
because due to their inclusion in the sinusoid functions as constant 
phase shifts, changes in c1 and c2 alter the interaction between 
particles, even from attraction to repulsion and vice versa. In fact, 
13 distinguishable patterns are observed in response to the change 
in c1 and c2 at constant system size, number of particles and val-
ues of α and c3 in a previous work [9]. These patterns are shown 
in Fig. 1. From the viewpoint of physics, c1 and c2 originate from 
the time-delay from the stimulation by the chemical to the re-
sponse in the movement and the chemical emission in the original 
model.

3. Results

We investigate the reason why the SO model can exhibit so 
many types of macroscopic patterns. We consider the simplest 
case, namely the two-particle system. The equations for the phase 
difference δ := ψ2 − ψ1 (mod 2π ) and the spatial distance ρ :=
r2 − r1 (ρ > 0) are given by

δ̇ = −2e−ρ cos(αρ − c1) sin δ, (6)

ρ̇ = −2c3e−ρ sin(αρ − c2) cos δ. (7)

Some features of this system are revealed in a previous work [10]. 
Fixed points are located at (δ, αρ) = (0, c2 + nπ), (π, c2 + nπ), 
(π/2, c1 + (2n + 1)π/2), and (3π/2, c1 + (2n + 1)π/2), where n
is an integer. The linear stability analysis reveals that bifurcation 
occurs at cos(c2 − c1) = 0, leading to two types of qualitatively dif-
ferent dynamics whose phase portraits are shown in Fig. 2. When 
cos(c2 − c1) > 0, every state tends to a stable phase difference 
and distance, while when cos(c2 − c1) < 0 every state remains 
oscillating in both values. Note that the implicit function describ-
ing the trajectories can be obtained analytically (see Appendix A). 
However, these two possible types of dynamics are not enough to 
explain the variety of macroscopic patterns in Fig. 1.

Let us focus on the dynamics near ρ = 0, because the interac-
tion between particles is stronger when they are spatially close. 
From Fig. 2, we can see that the topology of the phase portrait 
near ρ = 0 depends on whether c1 satisfies

c1 + (4n + 1)π/2 < 0 < c1 + (4n + 3)π/2 or

c1 + (4n + 3)π/2 < 0 < c1 + (4n + 5)π/2

and whether c2 satisfies

c2 + 2nπ < 0 < c2 + (2n + 1)π or

c2 + (2n + 1)π < 0 < c2 + (2n + 2)π

for each of cos(c2 − c1) > 0 and cos(c2 − c1) < 0. Corresponding to 
this classification, the c1–c2 space (0 < c1 < 2π and 0 < c2 < 2π ) 
is divided into eight regions whose borders are delineated by the 
black lines in Fig. 3. The figure also illustrates the phase diagram 
(blue characters and dashed lines) for the 13 macroscopic patterns 
obtained in a previous work [9]. Note that the lack of a definition 
of the dynamics at ρ = 0 does not influence the discussion below, 
as long as the dynamics is defined in its neighborhood.

Phase portraits in the eight regions are provided in detail in 
Fig. 4. Only the range of 0 < δ < π is shown, due to their symme-
try with respect to δ = π . Let us investigate each of the eight types 
of dynamics, and discuss the mechanism underlying the macro-
scopic patterns emerging in the many-particle system.

In region 1, 0 < c1 < π/2 or 3π/2 < c1 < 2π , π < c2 < 2π and 
cos(c2 − c1) < 0, there is a stable state at (δ, αρ) = (0, 0), which 
implies that the two particles tend to synchronize and aggregate. 
For the many-particle system, synchronized particles overlapping 
at a point tend to attract other particles around the point (see Ap-
pendix B). Thus, pattern A emerge in this region.

In region 2, π/2 < c1 < 3π/2, π < c2 < 2π and cos(c2 − c1)

< 0, all the fixed points are hyperbolic or neutral. The trajectory 
tangential to the line αρ = 0 is named semi-limit cycle for the fol-
lowing reason. Every initial state represented by a point outside 
this trajectory, namely in the shaded area in Fig. 4, approaches a 
point in the segment of 0 < δ < π/2 on the line αρ = 0. After 
reaching this segment, the state proceeds on the line of αρ = 0 to-
ward δ = π/2, since this segment is attractive with respect to ρ . 
After reaching (δ, αρ) = (π/2, 0), the state proceeds on the trajec-
tory tangential to ρ = 0 since the line of αρ = 0 is repulsive in 
π/2 < δ < π . Thus, all states outside this trajectory converge to it. 
On the other hand, if a state starts at a point inside this trajectory, 
the state undergoes periodic motion, returning to the initial state. 
Due to this characteristic, the trajectory is named semi-limit cycle 
here.

In terms of pattern formation, on the semi-limit cycle, two par-
ticles repeat the aggregation and separation processes, and the 
phase difference keeps oscillating around π/2. Reflecting this fea-
ture, in the many-particle system, every particle tends to approach 
to another, and then separate after a while. This is why parti-
cles exhibit the repeated scattering with each other in this region, 
namely pattern K. The reason for another pattern, H, is discussed 
later in terms of the asymmetry of the interaction.

In region 3, π/2 < c1 < 3π/2, π < c2 < 2π and cos(c2 − c1)

> 0, the two-particle system has a stable fixed point at (δ, αρ) =
(π, c2 − π). The two particles are repulsive with respect to phase, 
and tend to have the phase difference of π , namely anti-phase. In 
addition, for some initial states, the two particles aggregate once. 
If the initial state is in the area surrounded by the trajectory tan-
gential to αρ = 0 and the lines αρ = 0 and δ = 0 (shaded area in 
Fig. 4), the state reaches a point on the segment of 0 < δ < π/2
on the line αρ = 0. Since αρ = 0 is attractive in 0 < δ < π/2, the 
two particles remain aggregated with the increasing phase differ-
ence. However, they separate when the phase difference becomes 
π/2, and proceed to (δ, ρ) = (π, c2 − π) on the tangential trajec-
tory connecting to this point. The reason is that the line of αρ = 0
is repulsive in π/2 < δ < π .
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