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Analyzing percolation rules of real networks has some great realistic significance. In this paper, we 
develop a relatively simple model based on generating function method to study percolation properties 
of real networks. We construct our model for both site and bond percolation, compare its estimates with 
those of the message passing algorithm and simulation results on computer-generated networks as well 
as practical networks, and discuss causes of the inaccuracy. The conclusions show that the accuracy of 
our model could be accepted though it is lower than that of the message passing algorithm and the 
discrepancies between the estimates of our model and the simulation values mainly come from the 
disagreement of those real networks with the model hypotheses.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Percolation often used to model the spread of contagious dis-
eases [1,2] and Internet resilience [3,4], is one of the most studied 
processes in statistical physics. It discusses the total connectivity 
of lattices or networks under the same site or bond occupation 
probability, so it can be divided into site percolation and bond per-
colation. The probability generating function [5] is a powerful tool 
in this field to estimate some percolation properties, and based 
on it, Newman et al. [6] derived exact expressions of the mean size 
of non-percolating components, the size of the giant component, 
and the position of the phase transition for random networks with 
arbitrary degree distributions while Leicht and D’Souza [7] calcu-
late those properties for interacting networks composed of multi-
ple subnetworks. Those models above took the degree distribution 
of networks (or interacting networks) as the input, and in the strict 
sense, their estimations correspond to a series of networks (or 
multiple networks) with a concrete degree (or multi-degree) distri-
bution. Meanwhile, they didn’t discuss the occupation probability 
too much. In recent years, the research interest in this field has 
turned to analyses of some concrete real networks. Karrer et al. [8]
reformulated bond percolation on sparse, locally tree-like networks 
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as a message passing process. Based on the generating function 
method, they set up self-consistent equations, which take bond oc-
cupation probability as the input, and by solving those equations, 
they predicted the giant component size as well as the average size 
of non-percolating components for those concrete networks. Mean-
while, they also estimated the critical percolation probability of 
such a network by taking the reciprocal of the leading eigenvalue 
of the non-backtracking matrix. Hamilton and Pryadko [9] derived 
similar result for the site percolation threshold on any arbitrary 
quasitransitive tree and quasi-regular graph. Radicchi [10] used the 
message passing algorithm proposed by Karrer et al. [8] to study 
the bond and site percolation in real interdependent networks. 
Then Radicchi and Castellano [11] tried to overcome the main lim-
itation of that message passing algorithm by excluding redundant 
paths caused by triangles, and their modification improved the ac-
curacy of that algorithm more effectively in site percolation than 
bond percolation.

Though the message passing algorithm contributes a lot to 
studying percolation rules of real networks, its calculation process 
is somewhat complex and demanding. In this paper, we develop 
a relatively simple percolation model for real networks by adding 
occupation probability on the model of Newman et al. [6]. We con-
struct our model for both site and bond percolation, then compare 
estimates of the message passing algorithm and our model with 
simulation results on four concrete networks, and at last, we dis-
cuss causes of the inaccuracy of both the two models.
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2. A relatively simple model for percolation properties of real 
networks

2.1. The basic model based on generating function

Let us begin with reviewing the model of Newman et al. They 
defined the generating function for the degree of a node as

G0(x) =
∞∑

k=0

pk · xk, (1)

where pk is the probability that a randomly chosen node has de-
gree k. Then the generating function for the remaining degree of a 
node pointed by a randomly chosen edge was

G1(x) =
∞∑

k=1

pk · k · xk−1
∑∞

k=1 pk · k
. (2)

They used H0(x) and H1(x) to denote the generating functions 
for the size of a component which includes a randomly chosen 
node and which is reached by a randomly chosen edge, respec-
tively. They had

H0(x) = x · G0
(

H1(x)
)
, (3)

and based on Fig. 1 (a), they got

H1(x) = x · G1
(

H1(x)
)
. (4)

By demanding both sides of Eqs. (4) and (3) on x, and substi-
tuting x = 1 into them, they had

H ′
1(1) = 1

1 − G ′
1(1)

, (5)

and

H ′
0(1) = 1 + G ′

0(1)

1 − G ′
1(1)

. (6)

As H ′
1(1) ≥ 1, and according to Eq. (5), they derived the expression 

for the position of the phase transition:

G ′
1(1) = 1. (7)

When G ′
1(1) ≥ 1, there exists a giant component, and at this mo-

ment, they predicted u the probability that a randomly chosen 
edge is not part of the giant component by solving the equation

u = G1(u). (8)

Note that u = 1 is always a solution of Eq. (8), but this solution 
should be abandoned except when G ′

1(1) = 1, and some solution 
between 0 and 1 should be reserved. Then they calculated S the 
fraction of the graph occupied by the giant component as

S = 1 − G0(u). (9)

Though this algorithm is mainly applied to a series of networks 
with the same degree distribution, it could also be used to ana-
lyze the single network, as we can easily attain G0(x) and G1(x)
for that single network, and calculate G ′

0(1) and G ′
1(1) based on 

them. Papers like Fu et al. [12] and Li and Zhang [13] used simi-
lar algorithm to study some real interacting networks, but they did 
not incorporate the occupation probability into their theory model.

Fig. 1. A diagramatical representation of the sum rule for the connected component 
reachable by following a randomly chosen edge, where squares denote components 
and circles denote nodes. (a) excerpted from [6] discusses networks with the same 
degree distribution never under the node or edge removal, while (b) and (c) are 
for site and bond percolation, respectively, for instance, squares in (b) denote the 
connected components after the node removal with the probability (1 − p).

2.2. The extended model for site percolation on real networks 
and the comparison between its estimates and simulation values

Now we start our model construction from the case of site per-
colation, and here we use p to denote site occupation probability. 
Based on Fig. 1(b) and in analogy with Eqs. (3) and (4), we have

H1(x) = 1 − p + p · x · G1
(

H1(x)
)
, (10)

and

H0(x) = 1 − p + p · x · G0
(

H1(x)
)
. (11)

By demanding both sides of Eqs. (10) and (11) on x, and substitut-
ing x = 1 into them, we have

H ′
1(1) = p

1 − p · G ′
1(1)

, (12)

and

H ′
0(1) = p + p2 · G ′

0(1)

1 − p · G ′
1(1)

. (13)

From Eq. (13), we derive the phase transition expression:

pc · G ′
1(1) = 1. (14)

So the critical value of the node occupation probability is pc =
1

G ′
1(1)

, when p is above or equal to this value, the phase transition 
will take place. At this moment, we have

u = 1 − p + p · G1(u), (15)

and
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