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We investigate the dynamics of a system composed of a particle suffering impacts between two heavy 
periodically vibrating walls. An original, nonlinear area preserving mapping is obtained. The control 
parameters of amplitude of perturbation and frequency of oscillation play an important role in the phase 
space, shaping the portion of chaotic seas, position of invariant curves and the amount of KAM islands. 
The study of the behavior of the root mean square velocity was made via analytical description and 
numerical simulations. We proposed scaling arguments to describe its dynamics and our results show 
remarkably good agreement between the theory and the simulations concerning a scaling invariance 
with respect to the control parameters. Also, an analysis of the diffusion coefficient confirms the validity 
of the scaling invariance, giving robustness to our modeling.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hamiltonian dynamical systems with moving boundaries have 
been studied for a long time [1–3], where their dynamics are 
typically non-ergodic and non-integrable. These systems present 
mixed dynamics in the phase space, with KAM islands, invariant 
tori, spanning curves and chaotic seas, where the interface be-
tween them is very complex and not yet fully understood. Also, 
depending on both of the initial conditions as well as control pa-
rameters, such systems may present very rich and hence complex 
dynamics, therefore leading to a huge variety of nonlinear phe-
nomena [4–6]. Considering their dynamics, in either dissipative or 
non-dissipative regimes [7–13], an analysis of scaling arguments 
and statistical properties yields new approaches, new formalisms, 
therefore moving forward the progress of the nonlinear science.

Our main goal in this paper is to introduce the dynamics of a 
system where a single particle (or an ensemble of non-interacting 
particles), suffers elastic impacts inside a closed domain bordered 
by two heavy periodically moving walls. The motivation for this 
model backs to Ulam [14] and Fermi [15], who developed a pro-
totype model in order to explain the high energy of the cosmic 
rays, known as Fermi–Ulam model (FUM) [12], where an impact 
mechanism was setup, considering a particle suffering collision be-
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tween two walls, where one is fixed and the other is periodically 
vibrating. Such a moving boundary system can be considered as 
billiard-like dynamical system [2,16,17]. Applications in different 
areas of research can be found such as: granular materials [18,19], 
microwaves [20], quantum dots [21,22], synchronization [23], me-
chanical vibrations [24,25], laser dynamics [26], chaos control [27,
28], astrophysics [29], atom-optics [30,31], quantum effects [32,33], 
experimental devices [34,35], among many others.

This dynamical system that we aim to introduce in this paper 
differs from the original FUM [36–39]. Here, we are considering 
that the particle bounces between two heavy periodically vibrating 
walls, where each one of them has its own independent frequency 
of oscillation and amplitude of perturbation. Indeed, the kind of 
dynamics that we are proposing may be interpreted as a modeling 
for some known physical applications, such as ratchet-like dynam-
ics [40–42], where the connection with our modeling comes from 
an interaction of the particle with two driven periodic oscillators, 
i.e., both vibrating walls. Another examples are: the photonic laser 
thruster, where a laser beam suffers successive reflections among 
moving mirrors [43–45], as well as classic and quantum δ-kicked 
rotators [46–50].

The dynamics of our proposed impact system is described by 
an original, nonlinear and area preserving mapping, which has four 
nonlinear terms and three control parameters and makes the map-
ping unique among similar impact dynamical systems present in 
the literature. The phase space presents mixed properties, with 
chaotic seas, invariant curves and KAM islands, where the ratio be-
tween frequencies of oscillation, influences the number of islands
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Fig. 1. Illustration of the dynamics of the impact system and its variables.

and the size of the chaotic sea. Because of this last property, 
the system denotes potential for further investigations concern-
ing transport analysis, stickiness influence and anomalous diffusion 
[7,8,11,12]. Also, if one could introduce dissipation to the dynam-
ics, we believe that crises between attractors [9] and self-similarity 
structures in the parameter space would be observed. So, in a pri-
mary study of our impact system, the behavior of the root mean 
square velocity was investigated, where an analytical description 
of its evolution was made. Our numerical simulations lead us to 
propose scaling arguments to describe the dynamics of the root 
mean square velocity. At the end, an universal collapse for these 
curves was obtained, which gives validity to our scaling hypothe-
sis. Also, an analysis concerning the diffusion coefficient was made 
and shows a remarkable agreement with the analytical argument 
obtained by the investigation of the root mean square velocity as 
a function of the control parameters. Such agreement gives robust-
ness to the modeling of our dynamical system.

The paper is organized as follows: in Sec. 2 we describe how 
the mapping was obtained and some dynamical and chaotic prop-
erties. Section 3 is devoted to discussing the behavior of the root 
mean square velocity via analytical investigation and numerical 
simulations. It also describes the scaling invariance of the root 
mean square velocity curves regarding the control parameters. Yet, 
an analysis of the diffusion coefficient also confirms the validity of 
the analytical investigations and of the scaling arguments. Finally 
in Sec. 4, we present our final remarks and conclusions.

2. The model and the mapping

The dynamical system under study in the paper basically con-
sists of a particle of mass m moving in straight line trajectories, 
confined in a region of length �, where in each boundary of this 
confined region, lies two heavy periodically moving walls. The ve-
locity of the particle is said to be constant during the “flight time”. 
It only changes, when the particle interacts with the moving walls. 
Fig. 1 displays a schematic illustration of the dynamical system and 
its variables.

In both heavy moving walls, the periodicity is given by a cosine 
function. Their equations of motion are xw1 = ε′

1 cos(ω1t) for the 
left hand-side wall, said to be wall-1, and xw2 = ε′

2 cos(ω2t) for 
the right hand side wall, said to be wall-2. Here, ε′

1, ε′
2, ω1 and 

ω2 are the respectively amplitudes of motion and frequencies of 
oscillation.

The collision scenario will be setup considering the static wall 
approximation (SWA) [36,37], where no transcendental equations 
must be solved to find the exact collision time. In this approxi-
mation both walls are said to be fixed (at rest), but the particle 
exchanges momentum and energy with the walls at each collision 
as if they were moving normally [51,52]. It had been shown before 
that in similar impact dynamical systems, the difference between 
the real dynamics and the SWA is nearly null, if one considers the 
whole accessible phase space [8,51].

The mapping dynamics will be described in the variables ve-
locity v and time t . As an initial condition, we considered that 
the particle belongs to the wall-1, with an initial velocity v0 with 
positive orientation and the initial time t0. Once we decided to 
choose wall-1 as an initial condition (one could also start with 
wall-2, without any loss of generality), the mapping dynamics will 
be updated each time the particle collides again with wall-1.

Since we are considering static wall approximation, the time 
elapsed until the collision with the wall-2 can be set as t1,2 = t0 +
�/v0. In the same manner, the return time will be t2,1 = −�/v1, 
where now v1 is the velocity of the particle after colliding with 
wall-2 and it has negative orientation. So the total time for the 
particle to leave wall-1, collide with wall-2, and come back to col-
lide with wall-1 again is tt = t1,2 + t2,1, which gives us

tt = t0 + �

[
v1 − v0

v0 v1

]
. (1)

Let us now obtain the expression for v1. To evaluate the ex-
change of momentum and energy at each collision, we must con-
sider a change in the reference frame, from inertial to non-inertial. 
So, one may consider �X(t0) = �xp

′
(t0) + �xw2(t1,2), where �xp

′ is the 
position of the particle in the non-inertial reference frame, �xw2
and �X are respectively the equation of the wall-2 and the particle 
position in the inertial reference frame. After a time derivative we 
found �V (t0) = �v p

′
(t0) + �v w2(t1,2). The term �v p

′
(t0), is setup before 

the collision with wall-2 happens.
After the collision, and considering the conservation of momen-

tum, one obtain �v p
′
(t1,2) = − �v p

′
(t0). Coming back to the inertial 

reference frame, one may find �V (t1,2) = �v p
′
(t1,2) + �v w2(t1,2). Re-

arranging properly the terms and setting �V (t1,2) = v1, �V (t0) = v0
and �xw2(t1,2) = −ε′

2ω2 sin(ω2t1,2), one can finally obtain

v1 = −v0 − 2ε′
2ω2 sin(ω2t1,2) . (2)

Coming back to the total flight time expression set in Eq. (1), 
and replacing the expression for v1 obtained in Eq. (2), one may 
find

tt = t0 + �

[−v0 − 2ε′
2ω2 sin(ω2t1,2) − v0

v0(−v0 − 2ε′
2ω2 sin(ω2t1,2))

]
.

Rearranging the terms from the above expression, one may ob-
tain

tt = t0 + 2�

⎡
⎣ 1 + ε′

2ω2
v0

sin(ω2t1,2)

v0 + 2ε′
2ω2 sin(ω2t1,2)

⎤
⎦ . (3)

Since we are evaluating the dynamics considering a total flight 
time from wall-1, until the particle collides again with it, we 
should set the velocity v2 when the particle returns to the wall-1. 
So, applying the same procedure as done for v1 one may obtain

v2 = −v1 − 2ε′
1ω1 sin(ω1tt) . (4)

Replacing Eq. (2) into Eq. (4) and properly naming the terms: 
v0 = vn , v2 = vn+1, tt = tn+1 and t0 = tn , one may find

T :

⎧⎪⎨
⎪⎩

vn+1 = vn + 2ε′
2ω2 sin(ω2t1,2) − 2ε′

1ω1 sin(ω1tt)

tn+1 = tn + 2�

[
1+ ε′

2ω2
vn

sin(ω2t1,2)

vn+2ε′
2ω2 sin(ω2t1,2)

]
. (5)

One can realize that in Eq. (5) there are too many control pa-
rameters in the mapping, ε′

1, ε′
2, ω1, ω2 and �. In order to reduce 

these control parameters, let us set some dimensionless parame-
ters as ε1 = ε′

1/�, ε2 = ε′
2/�, and ω̃ = ω2/ω1. Also, since we are 

considering the mapping update when the particle reaches wall-1, 
let us set a dimensionless velocity as Vn = vn/ω1� and measure 
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