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We find that the purifications of several Gaussian maximally mixed states (GMMSs) correspond to some 
Gaussian maximally entangled states (GMESs) in the continuous-variable regime. Here, we consider a 
two-mode squeezed vacuum (TMSV) state as a purification of the thermal state and construct a general 
formalism of the Gaussian purification process. Moreover, we introduce other kind of GMESs via the 
process. All of our purified states of the GMMSs exhibit Gaussian profiles; thus, the states show maximal 
quantum entanglement in the Gaussian regime.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The principle of quantum purification means that for any mixed 
quantum state of a system A with a given orthonormal basis, there 
exists an orthonormal basis for ancillary system B (with at least the 
same dimension as that of the system A) that corresponds to the 
orthonormal basis of the system A. These two bases are closely 
related by a local unitary operation on the ancillary system B . 
This statement is the famous Hughston–Jozsa–Wootters (HJW) the-
orem [1]. For example, purification of a d-dimensional maximally 
mixed state (MMS) is just one of the d × d-dimensional maxi-
mally entangled states (MESs) up to the local unitary operations 
on the ancillary system. In quantum information theory, purifica-
tion is a mathematical procedure for generating a pure state from 
a mixed state [2–4]; however, this concept differs from the purifi-
cation in which a pure state is constructed from a mixed state via 
many copies of mixed states with the same dimensions [5–7]. For 
a continuous-variable (CV) system, the concept of MMS is rather 
vague and still not well-understood. Instead of exhaustively con-
sidering all possible CV systems, here we focus on the Gaussian 
CV systems that have many practical applications in quantum op-
tics and quantum information fields [8,9]. Note that the “Gaussian 
state” here means a quantum state having a Gaussian profile in 
the phase space, i.e., its Wigner function is a Gaussian distribution. 
We investigate several Gaussian maximally mixed states (GMMSs) 
and their purified states, i.e., the Gaussian maximally entangled 
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states (GMESs). We call this process and its underlying principle 
g-purification and Gaussian MMS–MES correspondence, respectively.

It is noteworthy that any Gaussian state can be decomposed 
by an infinite-dimensional Fock basis, and any convex combination 
of quantum states gives a quantum state again. By using the cor-
respondence, we find a new class of GMESs such as the (known) 
two-mode squeezed vacuum (TMSV) state with infinite squeezing 
parameter which is the purification of the thermal state with infi-
nite temperature, as well as the g-purified MESs over Brádler’s CV 
MMSs [10] and squeezed MMSs [11] in the Gaussian regime. These 
are then generalized in a single statement (see below). Further-
more, this method can be a powerful tool for Gaussian quantum 
information [12,13] (and references therein).

While the amount of entanglement of a given Gaussian state 
with a given purity (or mixedness) can be calculated [14], a GMMS 
in the CV regime that gives the MES via the purification process is 
not precisely defined. Therefore, we suggest several GMMS can-
didates (depicted in Fig. 1) and investigate their g-purifications 
explicitly. Note that the exact MMS is present only in a bounded 
Hilbert space. Even if we are dealing with an unbounded Hilbert 
space, however, we first perform the calculations in the bounded 
region and then take a limit of that region to infinity. Moreover, 
we describe an equivalence relation for GMMSs in the limit of the 
spectrum of the number operator n̂ tending to infinity. Prior to the 
study of Gaussian MMSs or MESs, we briefly review the MMS–
MES correspondence in the discrete-variable regime. The MMSs 
and MESs are main ingredients for the proof of existence of the 
additivity counterexample for the classical capacity of quantum 
channels [15–17]. Therefore, although there have been no practi-
cal suggestions for the proof to date, we can expect that Gaus-
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Fig. 1. Several Gaussian maximally mixed state (GMMS) candidates in the phase 
space within a circle boundary b. Here all candidates are depicted in 2d phase 
space, whose axes are Re(α) and Im(α). The radial component from the origin is 
expressed as r. Different colors represent the different kind of states and the den-
sity of color corresponds to the density of distribution function of state in the phase 
space. (a) Ideal GMMS (uniform distribution), (b) thermal state with a given temper-
ature, (c) Brádler’s continuous-variable MMS. Small circles are displaced coherent 
states, (d) squeezed GMMS with argument φ = 0, (e) φ = π

2 and (f) φ = π
4 . Various 

shapes of squeezed circles are illustrated as direction of squeezing. These all exhibit 
different profiles within the boundary but become identical as the boundary tends 
to infinity. We note that the thermal state (b) has an infinite tail thus it tends to a 
uniform distribution only if the temperature approaches infinity. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

sian MMS–MES correspondence can be applied to the Gaussian 
channel-capacity problem. Since Gaussian states are well known 
and can be implemented in quantum optics, we consider this 
Gaussian MMS–MES correspondence as a tool for experimental 
proof of super-additivity of the classical channel-capacity problem. 
Here, we assume that a GMMS has the maximal von Neumann en-
tropy in the same manner that a full-ranked d-dimensional MMS 
has the maximal entropy log d.

2. Gaussian MMS–MES correspondence via g-purifications

We now briefly review the purification process in the discrete-
variable case in order to set the stage for our investigation on 
the Gaussian CV case. Suppose that a mixed state ρA can be 
decomposed by an orthonormal basis {|i〉A}d

i=1 such that ρA =∑
i pi |i〉 〈i|A . To purify ρA , let us introduce an ancillary system B

with the orthonormal basis {|i〉B}d
i=1 whose dimension is same as 

that of the system A. If we define a pure state as

|ψ〉AB :=
d∑

i=1

√
pi |i〉A |i〉B , (1)

then we naturally obtain the reduced density matrix of the system 
A as (ψAB := |ψ〉 〈ψ |AB )

TrB(ψAB) =
d∑

i, j=1

√
pi p j|i〉〈 j|Aδi j

=
∑

i

pi|i〉〈i|A = ρA . (2)

Thus, for some fixed basis, |ψ〉AB is a purification of ρA . Now, sup-
pose that |�〉AB = 1√

d

∑d
	=1 |	〉A ⊗ |	〉B is a d2-dimensional MES, 

we then obtain (�AB := |�〉 〈�|AB )

TrB(�AB) = 1

d

d∑
	,m=1

|	〉〈m|Aδ	m

= 1A

d
:= ρ A

d,MMS, (3)

where 1 denotes the d-dimensional identity matrix. This implies 
that the MES |�〉AB is one of the purifications of ρ A

d,MMS. The 
d-dimensional MMS ρ A

d,MMS has an important property that is 

maximal von Neumann entropy, i.e., S(ρ A
d,MMS) = −Tr

(
1A
d log 1A

d

)
= log d, where S(
) := −Tr
 log
. This is crucial for quantum 
cryptographic protocols and the theory of quantum channel-
capacity.

We now consider the Gaussian CV case. In general, a d-mode 
Gaussian quantum system is described in 2d-dimensional (real) 
symplectic phase space Sp(2d, R) and exists in the infinite di-
mensional Hilbert space with continuous eigenvalues of Gaussian 
observables [12]. For convenience, we limit our discussion on the 
phase space with d = 1, i.e., Sp(2, R). In the Gaussian regime, the 
concept of GMMS is not well-defined, in other words, the state 
cannot be uniquely specified. Prior to the main observation, we in-
troduce an ideal GMMS, denoted as ρGMMS (see Fig. 1(a)), which 
can be expressed by an equiprobable basis set, i.e., uniform dis-
tribution in the phase space. The distribution should also have a 
Gaussian profile, however, it becomes uniform only in the limiting 
case. All other candidate states should also tend to the uniform 
distribution as the boundary parameter approaches the limiting 
value. We must be aware that the state mentioned above is a 
quantum state, i.e., Tr(ρGMMS) = 1, but not an identity operator 1. 
For a bounded basis (parameters are not tending to infinity), 1 and 
MMS are identical up to a constant. However, it can be easily 
shown that Tr(1) = ∞ in the entire phase space because of its 
unbounded basis; we therefore need to consider a finite region of 
the phase space in which a circle of radius b centered at origin 
and then take the limit to infinity. Note that Fig. 1 depicts several 
GMMS candidates in the phase space with some boundary b from 
the origin.

The firstly important candidate is thermal state, that can be 
written in the coherent state basis such as ρth(n̄) =

1
n̄π

∫
e− |α|2

n̄ |α〉 〈α|d2α, where n̄ is the mean photon number and 
|α〉 is a coherent state. Unlike for all other cases, in the case 
of the thermal state (Fig. 1(b)), the temperature (variance it-
self) is the regularizing parameter instead of a boundary of the 
phase space. Therefore, we can show that an infinite tempera-
ture (infinite variance) implies that the thermal state approaches 
the ideal MMS. If we introduce the Gaussian operations of dis-

placement D̂(α) = eαâ†−α∗â and squeezing Ŝ(ζ ) = e
1
2 (ζ ∗â2−ζ â†2)

(where â and â† are the annihilation and the creation operators 
satisfying the commutation relation [â, ̂a†] = 1), then a coher-
ent and a squeezed coherent state, i.e., |α〉 = D̂(α) |0〉 ∈ Sp(2, R)

and |α, ζ 〉 = Ŝ(ζ )D̂(α) |0〉 ∈ Sp(2, R), form an overcomplete set 
such that 1

π

∫
d2α|α〉 〈α| = 1 and 1

π

∫
d2α|α, ζ 〉 〈α, ζ | = 1, respec-

tively [18].
Moreover, it is important to note that the products of reg-

ularization of the convex combination of coherent or squeezed 
coherent states are GMMSs: for some (normalization) constants k
and k′ , 1

k

∑∞
i=1 δ2αi |αi〉 〈αi | = ρα

GMMS ∈ Sp(2, R) and 1
k′

∑∞
i=1 δ2αi ×

|αi, ζ 〉 〈αi, ζ | = ρ
(α,ζ )
GMMS ∈ Sp(2, R), respectively. For convenience, we 

omit the index i and substitute the summation by the integral as 
δ2αi → 0. Then, what we need to investigate is whether ρGMMS =
ρα

GMMS = ρ
(α,ζ )
GMMS = ρth ∈ Sp(2, R).

Our main questions are: what is the purification of the ideal 
GMMS ρGMMS and is it a GMES? To answer these questions, we 
formulate a detailed Gaussian purification process (i.e., g-purifi-
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