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Bending sound in graphene: Origin and manifestation
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It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation 
interaction between in-plane and out-of-plane terms in the free energy arising with account of non-
linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation 
based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and 
bending modes. The explicit expression for the bending sound speed depending only on the graphene 
mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the 
microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the 
data of real experiments and computer simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that the lattice dynamics of “zero-thickness” 
crystals has a principal feature, which is not inherent to bulk 
solids. This is the logarithmic in a 2D lattice area growth of the 
mean-square atomic displacement at non-zero temperatures (the 
Peierls–Landau theorem [1]). A more “dangerous” consequence of 
low dimension, which might appear in 2D crystals, is connected 
with the classical “membrane” effect [2]: in a suspended (free-
standing) state, the dispersion law of the so-called bending (out-
of-plane) atomic vibrating mode ωB = √

κ/ρq2 is quadratic upon 
the wave-number q; κ > 0 is the bending rigidity [2] and ρ is the 
mass density of 2D crystal. Then the mentioned mean-square dis-
placement found using this law may be proportional to the 2D 
crystal area [3] (see also [4]). Such “membrane” effect should first 
of all manifest itself in graphene [5] whose comprehensive study 
was stimulated by work [6].

Meanwhile, the first results of numerical simulation of the 
normal–normal correlation function for the graphene fluctuating 
surface [7] showed that for small (q < 0.1 Å−1) wave numbers it 
does not diverge anymore, tending to a saturation (see also papers 
[8,9] on simulations of the height-height correlation functions for 
graphene sheets). If so, then actually the eigenfrequencies of long-
wave bending vibrations in graphene decrease as q → 0 not faster 
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than linearly in q like those for the in-plane vibrations. Hence, the 
mean-square atomic displacement in a graphene sheet depends on 
the sheet area at most logarithmically. However, consequent calcu-
lations for large graphene system using a modified Monte Carlo 
method and molecular dynamics (MD) simulations [10] did not 
show any saturation of the normal–normal correlation function at 
least for q > 0.02 Å−1 (see also [11]) that could indicate a lack of 
low-frequency sound segment in the graphene bending mode.

Nevertheless, the linear dispersion of the bending mode in 
graphene at q → 0 was established in the recent papers [12,13]. 
In [12] this was done within the quantum theory of crystalline 
membrane with account of cubic interactions between in-plane 
and out-of-plane displacement fields and a quartic local interaction 
for the out-of-plane displacements. In [13] starting from a discrete 
atomistic model of a monolayer crystal with anharmonic coupling 
of third and fourth orders, a dependence ωB = sBq has been also 
obtained. It is worth mentioning the work [14], in which the lin-
ear dispersion of the bending mode at q → 0 is a result of coupling 
between structural and electronic degrees of freedom in graphene. 
The found in [14] sB ≈ 1 km/s at 300 K turned out 15–20 times 
less than the in-plane sound speeds in graphene. Note that close 
estimate sB ≈ 1.6 km/s has been obtained in [15] by analogy be-
tween the phonon dispersion curves in graphene and experimental 
results for graphite.

It is worth mentioning the recent work [16], in which the lin-
ear dispersion of the out-of-plane acoustic mode in graphene was 
obtained by means of classical MD simulations. According to the 
results of [16], the bending sound speed sB demonstrates very 
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small size effect and changes from 0.4 km/s at 300 K to 0.6 km/s 
at 2000 K.

Besides, there are experimental facts that give grounds to sug-
gest that sB �= 0 in graphene. To give a consistent explanation of 
the temperature dependence of the electron mobility in graphene, 
it was suggested in [17] that the flexural (out-of-plane) phonons 
are a major source of electron scattering in suspended graphene. 
At the same time to match the experimental data the authors of 
[17] suggested the existence of some (in fact, “frozen”) in-plane 
strain in graphene (see also [18], where the ripples or microscopic 
corrugations of a graphene sheet are discussed). The presence of 
these static strains results in the linear dispersion of the bending 
mode at q → 0. It is worth mentioning that the existence of struc-
tural corrugations (“intrinsic microscopic roughening” [19]) of the 
free-standing graphene with an amplitude ∼1 Å and a character-
istic wave-length ≈50 Å had been observed in the transmission 
electron microscopy experiments [19–21].

Thus, neither the experimental data nor results of numerical 
simulation of the structure and phonon spectra of free standing 
graphene sheet demonstrate any indications of “membrane” effect 
in the graphene out-of-plane vibrations at q → 0. So, the con-
vincing theoretical arguments in favor of the sound-like long-wave 
dispersion for the bending vibrations of graphene-like 2D crystals 
are needed.

Strikingly small value of sB in comparison with in-plane sound 
speeds of graphene indicates that the origin of the bending sound 
differs radically from that of in-plane modes. In the present paper, 
using transparent physical arguments we show that the long-wave 
region of the bending mode spectrum must necessarily have lin-
ear in wave number dispersion. This result is obtained through 
the account of the terms represented by products of bilinear com-
binations of both in-plane and out-of-plane deformations in the 
graphene elastic free energy. Note that such terms are usually ig-
nored, and their accounting is a key point of our approach to the 
theory of elastic properties of quasi-2D solids. Using the known 
values of elastic and structure parameters of graphene, we derive 
the bending sound speed sB for arbitrary temperatures without 
introducing any additional fitting parameters. What matters, the 
derived formula for sB is independent of the graphene sample 
size and is expressed only through its in-plane moduli (and also 
third-order elastic constants) and temperature. Note that combin-
ing results of our approach with result of [12] one can verify that 
the considered in [12] cubic and quartic terms, which we ignored 
in the graphene free energy when deriving the expression for sB , 
do not change the found expression at least at high temperatures. 
The corresponding analysis permits also to renormalize the bend-
ing rigidity coefficient κ .

The approach developed in the present work allows to repro-
duce with reasonable accuracy the main results of [16] referencing 
only to one value of sB at a certain temperature. Besides, the 
mean-square out-of-plane displacement for free standing graphene 
of given linear size is obtained and fluctuation corrugations of 
graphene are also described. The theory demonstrates quantitative 
agreement with the experimental data and the results of com-
puter simulations in wide temperature interval. In principle, the 
results of the paper may also be used for study of the dynamics 
of graphene-like crystals: silicene, germanene, graphane etc. (see 
[22–24]).

2. The “sound” segment of the free-standing graphene bending 
mode

For study of long-wave mechanical vibrations in graphene we 
use a continuum model of elastic 2D plane in 3D space. Let 
r = (x, y) be the radius-vectors of graphene points in equilibrium, 
u(r) and w(r) are corresponding in-plane and out-of-plane com-

ponents of displacement vectors, respectively; u̇(r), ẇ(r) are time-
derivatives of u(r), w(r).

Thereafter the “Hamiltonian” for long-wave mechanical vibra-
tion in hexagonal graphene can be written in the form:

H =
∫

dr
{

ρ

2

[
u̇2(r) + ẇ2(r)

] + λ

2
εαα(r)εββ(r)

+ μεαβ(r)εαβ(r) + κ

2

[∇2 w(r)
]2

}
, (1)

where

εαβ(r) = 1

2

[
∂uα(r)

∂rβ

+ ∂uβ(r)

∂rα
+ ∂uγ (r)

∂rα

∂uγ (r)

∂rβ

+ ∂ w(r)

∂rα

∂ w(r)

∂rβ

]
(2)

are in-plane components of strain tensor [2] with α, β, γ running 
x, y (summation in repeating subscripts is implied); ∇ is the 2D 
gradient, ρ is the 2D mass density, λ > −μ and μ > 0 are Lamé 
coefficients. In (1) we also included the term with the bending 
rigidity κ > 0 which is usually taken into account when consid-
ering the flexural effects in membranes [2]. Note that this term 
for graphene as one-atom-thick 2D layer can not be directly con-
sidered in the framework of the elasticity theory for macroscop-
ically “thin” plates [2]. Really, the formal expression for κ in the 
classical elasticity theory contains the cube of a plate thickness 
[2] and in application to 2D graphene sheet of “zero” thickness 
a macroscopic interpretation of the parameter κ becomes prob-
lematic. Nevertheless, graphene as quantum 2D lattice of carbon 
atoms with strong covalent bonds must possess a finite flexural 
rigidity due to a change of electron hybridization at microscopic 
bending of graphene [25]. In addition, a certain contribution to κ
is attributable to non-linear terms in (2) (below we obtain explicit 
expression for this contribution using the approach developed in 
[12]). However, the modeling of bending rigidity for multilayer 
graphene by formulas of the classical theory of elasticity may be 
justified [26].

Contrary to many papers on the topic we keep the quadratic
terms (∂uγ (r)/∂rα)(∂uγ (r)/∂rβ) in the expression (2) for the 
strain tensor, which are usually treated as small. This is the key 
point of our approach.

In the free standing graphene not affected by the action of ex-
ternal forces the strains can have the only oscillation nature (we, 
surely, disregard the boundary effects). So, in the first order of per-
turbation theory, the terms of kind[

∂uα(r)

∂rβ

+ ∂uβ(r)

∂rα

]
∂ w(r)

∂rα

∂ w(r)

∂rβ

, (3)

in (1), in fact, will give zero contribution into the free-energy 
of the long-wave out-of-plane deformations. Indeed, the linear in 
the in-plane phonons factor in (3) is “rapidly fluctuating” in com-
parison with the quadratic one related to phonons of the bend-
ing branch (cf. the discussion concerning the speeds of the cor-
responding modes in the Introduction; besides, formally by the 
dispersion law ωB = √

κ/ρq2 at q → 0 the speed dωB/dq → 0). 
Thus, during the period of the “fast” in-plane oscillations the factor 
[∂ w(r)/∂rα][∂ w(r)/∂rβ ] in (3) can be considered as constant, and 
then the average of the linear on the in-plane phonons factor is 
obviously zero. However, in the second order of perturbation the-
ory the terms (3) give non-zero contribution into the free-energy 
of the out-of-plane mode (see below in this section).1 Moreover, 

1 Note, that the above arguments suggest that the free-standing graphene does 
not undergo an external (for example, from the substrate) stress. The latter can 
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