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Based on the analysis of band structure and edge states on zigzag graphene nanoribbons (ZGNRs), 
we can study theoretically the origination of two minimal quantum conductance. At the two energy 
points −0.20 eV and 0.15 eV corresponding to the two dips of quantum conductance, the spin-polarized 
quantum conductance is about 45%. Furthermore, the two types of edge-localized carriers in the opposite 
transport directions along the two opposite edge sides form the quantum internal loop current, which 
can generate one big magnetic moment. At these two energy points −0.17 eV and 0.15 eV the two 
induced magnetic moments are in opposite signals.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the groundbreaking experiments on the monolayer graph-
ene [1], the low-dimensional carbon nano-materials is a promis-
ing material for future electronics. The extensive experimental 
and theoretical researches have been devoted to study their var-
ious novel physical properties. The subsequent experimental mea-
surement on graphene layers motivated the investigation on the 
spin quantum transport in graphene [2,3], especially the quantum 
anomalous Hall effect (QAHE) [4,5]. Without the spin-splitting fac-
tors early many theoretical work investigated the band structure 
and quantum current, and proposed the massless Dirac disper-
sion in band structure of various graphene nanoribbons [6–13], the 
band gap and the zero-energy edge states in the two-dimensional 
narrow graphene nanoribbons (GNRs) [14–19]. The electronic 
transport in graphene nanoribbons with sublattice-asymmetric 
doping [20] and in the heterosubstrate-induced graphene super-
lattices [21] are investigated recently. Involving the spin-splitting 
factor, Y.-W. Son et al. found that the band gap and the spin-
polarized edge states from the first principle method [22]. J Guo 
et al. introduced the self-consistent on-site Coulomb interaction 
(O-CIs) [23,24] into the tight-binding model to successfully ob-
tain the band structure in agreement with the results of Son’s 
work [22]. Furthermore, at the Fermi energy the electrons with dif-
ferent spin spatially distribute on the different edges, respectively, 
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so called spin-polarized edge states in ZGNR [14–28]. These unique 
features would lead to interesting electronic transport properties. 
L. Sheng et al. proposed the spin Chern number to determine 
the various phases of quantum Hall effect [26–28]. The low-bias 
low-temperature integer-step quantized conductance in graphene 
nanoribbon with various edges have been studied in the many 
works of Refs. [7–19,23–27]. Recently, J. Wilhelm et al. studied 
the spin-flip conductance of hydrogenated graphene nanoribbon 
from the first principle method [29]. Our previous work success-
fully studied the binding energy of exciton exciting between two 
edge states [30] and the quantum current [31] involving this self-
consistent O-CIs.

Since the work of Kane and Mele [32,33] in graphene nanorib-
bon, the spin–orbit couplings (SOCs) have attracted much attention 
on the edge band and edge states in GNRs. Based on the Kane and 
Mele (KM) model the integer-step quantized conductance is stud-
ied in many theoretical work [26–29,34–38]. Sheng’s group pro-
posed a Laughlin-like gauge argument to understand the general 
properties of edge states [26,27] and reviewed the characteristics 
of quantum spin Hall effect (QSHE) [28]. By using the KM model, 
varying the strengths of SOCs, M. Ezawa investigated the quan-
tum phase transition and the quantized conductances in silicene
nanoribbons [34,35]. Especially, under low-bias and low temper-
ature J. Baringhaus et al. [40,41] precisely measure the quantum 
conductance in GNRs with different length and width. At zero-bias 
the integer of quantized conductance changes from 2 to 0 with 
the increase of length [40]. The probed transmissions of Farby–
Perot-like resonances showed one transport gap 5 meV [41] at 
low temperature in graphene nanoconstrictions (GNCs) with length 
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L = 6 nm and width W = 2 nm. However, because the strengths of 
SOCs are very weak in graphene [42,43], the measurement of novel 
spin-polarized transport can not be achieved in ZGNRs. Therefore, 
one proposed and developed some methods to open band gap [13,
28,35,39] and to enhance the strengths of SOCs [44–48].

Concerning on the O-CIs, the QHE system can be changed as 
the change of topological edge bands by adjusting the strength of 
the O-CIs in ZGNRs [13,28,35,39]. When adding one constant O-CIs 
term, Wang et al. [39] obtained one different edge band structure 
from Sheng’s work (in Ref. [28]). The unique spin-related electronic 
structures and the topologically-protected edge states are sensi-
tive to the Coulomb interactions (CIs), especially the O-CIs. Many 
theoretical works studied the influences of the O-CIs on quantum 
transport and band structure, such as the CI on the doping site 
[13], the staggered lattice CI [28,35], and the constant O-CIs [39], 
however, these types of CIs do not consider the spin-splitting fac-
tor and can not compare with the band structure from the first 
principle method [22]. Obviously, the self-consistent O-CIs [23,24]
can provide reasonable band structure having a band gap. As far 
as we know, one did not use this type of O-CIs together with two 
types of SOCs and the Zeeman effect to study the band structure 
of edge states and the spin quantum transport.

In the present work, based on the tight binding KM model 
[32,33], we think that the self-consistent O-CIs [23,24] can help 
us understand and predict novel phenomena associated with spin 
transport due to the existence of the edge states compared with 
the previous theoretical work [28,39]. According to the edge band 
structure and the strong localization of electron at the two edges, 
we think that the two opposite quantum currents at the edges 
can form of the internal current loop, which can generate strong 
magnetic moment. Thus it can provide one experimental way to 
observe the SOCs and the localization characteristics of carriers in 
the edge states. This paper is organized as follows: In Sec. 2 we 
outline our theoretical approach. Numerical results are presented 
and discussed in Sec. 3. We close by providing a brief summary 
and outlook in Sec. 4.

2. Theoretical approach

Despite the hoping kinetic terms, in the present work, the 
Hamiltonian of system still involves the two types of spin–orbit
couplings (SOCs) describing by the Kane–Mele model [32,33], the 
Zeeman effect generated by the applied magnetic field and the 
self-consistent on-site Coulomb potential [20,21]. The Zeeman ef-
fect plays an important role to form the edge bands crossing the 
Fermi energy, in which the electrons of two edge states at the 
same energy are in the ferromagnetic spin-polarized configuration 
at the two edges, respectively [49]. The Hamiltonian is written as 
[23–25,32,33,49,50]

Ĥ = Ĥ0 + ĤSO + Ĥ Z + ĤU , (1)

where

Ĥ0 =
∑
〈i, j〉

ti jc
+
i c j,

ĤSO = iV R

∑
〈i, j〉

c+
i ez · (σ × di j)c j

+ iV so
2√
3

∑
〈〈i, j〉〉

c+
i σ · (dkj × dik)c j,

Ĥ Z = g
∑

i

c+
i σzci,

ĤU =
∑
i,σ

U

(
〈niσ̄ 〉 − 1

2

)
niσ ,

where c+
i = (c+

i↑, c+
i↓) (ci = (ci↑, ci↓)T ) is the electron creation (an-

nihilation) operator at site i, σ is a vector that consists of the Pauli 
spin matrices. 

∑
〈i, j〉 denotes the summation over the nearest-

neighbor sites, the sum 
∑

〈〈i, j〉〉 is restricted to next nearest-
neighbor sites, and ti j = −2.60 eV is the two-center hopping 
integral between the nearest neighbor sites. dik is a unit vector 
pointing from site k to site i, where k is the only common nearest 
neighbor of i and j. The first term is general kinetic term H0. The 
second term Hso represents the SOCs within the Kane–Mele spin–
orbit model [32,33,50]. Whereas involves the Rashba SOC and the 
intrinsic SOC denoted as Hso . The third term H Z is the Zeeman 
effect generated by the applied external magnetic field perpen-
dicular to the plane of ZGNR. The Zeeman effect not only can 
open a band gap, but also can lift the spin-degeneracy [28,35]. 
The fourth term HU is the O-CIs [20,21], in which niσ = c+

iσ ciσ is 
the spin-resolved number operator, and 〈niσ 〉 is the average occu-
pation probability of electrons on site i with the spin-direction σ . 
In the calculation of the Fermi–Dirac distribution we take the room 
temperature T = 300 K. Although the intrinsic SOC is very weak in 
graphene [42,43], there are some developed methods to enhance it 
by magnetic adatoms [44,45], impurities [46], substrate [47], and 
halogeneration [48]. Therefore, in the our calculation we can take 
the large SOC interaction parameters V R = 0.01ti j , V so = 0.02ti j , 
g = 0.02 eV [28] and U = 4 eV [20,21] in order to clearly illus-
trate the spin quantum conductance contributing from the edge 
states. The width of ZGNR can be defined by the number of sites 
in the unit cell. In the present work taken the width NW = 8 as 
an example we investigate the electron structure and the quantum 
transport.

The conductance through a region of interacting electrons can 
be calculated by use of the Landauer formula [51–55]

T =
(

e2

h

)
tr

(
ΓL Gr

C ΓR Ga
C

)
, (2)

where tr(ΓL Gr
C ΓR Ga

C ) is the transmission function, Gr,a
C represent 

the retarded and advanced Green function of the heterojunction, 
and ΓL,R are the couplings of the heterojunction to the left and 
the right ZGNRs, respectively. In the present work the heterojunc-
tion and the two leads adopt the same periodic length with one 
layer of ZGNR to self-consistently calculate the O-CIs on site in 
Eq. (1). Therefore, the calculated quantum conductance is for an 
ideal crystal.

The internal current from site j to i is calculated from the 
Green’s function Gn , usually referred to as a correlation function 
[56–58],

Ii j = e

h
Im[Hij Gij]. (3)

The correlation function Gn is defined as Gn = Gr
C ΓL Ga

C . The 
magnetic moment arising as a result of the quantum loop current 
also has interesting properties. Recall that the induced magnetic 
moment is expressed as,

M =
∑
〈i, j〉

Ii j(ri × r j)/2, (4)

where the summation is taken over each pair, i and j, whose 
corresponding Hamiltonian matrix element is nonzero, and ri indi-
cates the coordinates of the site i. Due to ri in the plane of ZGNR 
the magnetic moment has only the z-component.

3. Results & discussion

3.1. Band structure and edge states

Firstly, we show the band structure and the electron spin spa-
tial distributions of edge bands near the Fermi energy in order 
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