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a b s t r a c t 

According to the Anderson localization theory, the wavefunctions of a sufficiently strong disordered sys- 

tem are localized. We show that shifting hopping energy between nearest neighbors would induce an 

anomalous localization-delocalization transition in a disordered square lattice nanotube modelled by 

tight-binding. For this purpose, the consecutive level spacing statistics and the singularity spectrum anal- 

yses were performed. The quantum analysis of singularity spectrum reveals distinctive multifractality 

structures of the wavefunctions associated with localized and delocalized phases. We find that while 

in finite-size limit the system has a sudden metal-insulator transition, in large-scale limit the system ex- 

periences a rapid but continuous crossover. Interestingly, we report a critical value of hopping energy for 

which the system behavior is fairly close to metallic phase and especially independent of the system size. 

Passing this critical value, a great difference in the electronic transport properties of the system occurs. 

It follows that in the large-scale size, the system tends to follow semi-metallic behavior, while in finite 

size behaves more like to an insulator. The localization-delocalization transition is also reflected in the 

electrical current. In accordance with the indicators studied, we find that in delocalized regime there is 

a spreading electrical current throughout the whole system with an azimuthal symmetric characteristic. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Motivated by experimental observations of Anderson localiza- 

tion theory [1–4] , there has also been a resurgence of interest 

in exploring the fundamental aspects of electronic transports in 

quantum models [5,6] , in nanoscale devices [7,8] , and in DNA 

molecules [9] . Electronic localization (delocalization) phenomena 

in quantum systems have long been a central problem in con- 

densed matter physics. A variety of remarkable phenomena such 

as superconductors with high critical temperatures [10] and in- 

teraction driven metal-insulator transitions [11] is well known to 

arise from electron correlations. However, metal-insulator transi- 

tion (MIT) which could be defined as the quantum interference 

among multiple scatterings of an electron with random impuri- 

ties and defects of material is used for new types of optoelec- 

tronic switches [12] . The MIT describing the properties of a crit- 

ical quantum state at the transition phase has been represented 

first in the Anderson model [13,14] . The emergence of this phe- 

nomenon has been reported experimentally in a wide variety of 

examples, including light [15] , microwaves [16] , and matter waves 

[17] . According to this theory, eigenstates of low-dimensional sys- 

tems without disorder-correlation are localized and so spread only 
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over a finite and small region, while for long-range correlation it 

is possible to find extended states [23] . Many conductance studies 

have addressed the interaction effects using the method of non- 

equilibrium Keldysh Green functions [18] . In this approach, one as- 

sumes non-interacting leads and the non-equilibrium current are 

obtained as a function of the exact propagators of the interacting 

cluster (including the contribution of the leads). The requirements 

and simplification made for employing the Green function method 

can be considered of the restrictions on the use of this method. 

But, similar phenomena occur in few-body quantum systems, 

which frequently show the emergence of the so-called quantum 

chaos [19] . As quantum mechanics lack a notion of phase space, 

we identify transport properties with quantum chaos, now a stan- 

dard prescription [20,21] , and we use the corresponding diagnos- 

tic tools. There, upon changing parameters/numbers of degrees of 

freedom, the classical system can go from regular to chaotic be- 

havior. On a quantum level this results in changes of level statis- 

tics, which has been proven to be a powerful probe of the system 

properties in the context of quantum chaos [22] . As will be seen, 

this perspective provides sufficient information to capture localiza- 

tion aspects of the studied system. 

The absence of delocalized behavior in a two-dimensional dis- 

ordered system has been well-predicted with the scaling the- 

ory [23,24] . Earlier it was suggested that the Anderson model of 

localization with purely off-diagonal disorder might violate the 

general statement of scaling theory [25,26] . In addition, accord- 
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ing to the dimensionality of the space and the universality class 

[27,28] some exceptions have been reported in the literature. These 

include electrons having strong spin-orbit coupling [29] , integer 

quantum Hall systems [30,31] , tight-binding models with random 

magnetic fields [32] , systems having symplectic symmetry in the 

presence of strong magnetic field [33] . Furthermore, after the dis- 

covery of graphene some experimental and numerical evidences 

[34] of the existence of mobility edge [35–37] and delocalized 

states [38,39] have been found. Considering these controversy, we 

study the metal-insulator transition in a special case of 2D sys- 

tems. In this picture, it is considered that the hopping energy be- 

tween nearest neighbors is changed as a result of magnetic field, 

strain, and so on. Accordingly, we consider a typical 2D crystal 

with periodic boundary conditions. 

In this work, we study the transport properties and transition 

behavior of a nanotube via the standard tight-binding (TB) model 

in the presence of an uniform disorder. Due to the quantum nature 

of the system and metal-insulator mechanism, we have tried to 

use quantum chaos tools. We find that in localized phase the elec- 

tronic transport behavior of the system is almost independent of 

system size, while in delocalized phase there are different patterns. 

The proximity index reveals a critical value of hopping energy for 

which the system behavior is close to metallic phase and more im- 

portantly, independent of the system size. It follows that in the 

large-scale size, the system tends to follow semi-metallic conduc- 

tivity, while in finite size the system behaves more like an insu- 

lator. Also, we study electrical current in the delocalized (ergodic) 

and localized phases. In accordance with the indicators studied, we 

find that in delocalized regime there is a spreading electrical cur- 

rent in both azimuthal and altitudinal directions with an azimuthal 

symmetric characteristic. 

2. Model 

Recent years have witnessed increasing attention on low- 

dimensional systems. In particular, various two-dimensional (2D) 

materials are found in recent years [40,41] . The novel and ex- 

ceptional properties of newfound materials have made them sub- 

stantial in both fundamental research and applications. Therefore, 

we have focused on a nanotube by considering a square lattice 

with periodic boundary conditions shown in Fig. 1 . The tight- 

binding Hamiltonian with nearest-neighbor hopping characterizing 

the properties of such a system could be written as 

H = 

∑ 

i 

ε i c 
† 
i 
c i + 

∑ 

<i, j> 

t i, j (c † 
i 
c j + H.c. ) . (1) 

where t i, j is the hopping term between the nearest-neighbor sites. 

We suppose that on-site energies εi s are uniformly distributed 

over [1/2, 1/2]. Considering modification of atomic orbitals due to 

applied magnetic fields, leads to a modified hopping integral with 

a variable nature dependent on the strength of the applied field 

[42] . So, the aim is to understand the interplay of the possibly in- 

teractions between neighbors on the transport properties. Accord- 

ing to the random matrix theory, statistics of eigenenergies is not 

only known to be a powerful probe of crossovers between chaotic 

and integrable systems in quantum chaos, but also the delocalized 

and localized states can be characterized by energy level statistics 

[43,44] . Based on this controversy we discuss the results. 

3. Results 

We try to analyze comprehensively the electronic transport 

properties of a nanotube modelled by tight-binding Hamiltonian 

(1) . The geometry is determined by a square lattice of N 

2 atoms 

with periodic boundary conditions. We study this system using ex- 

act diagonalization with N = 10 , 12 , 14 (10 3 disorder realizations), 

Fig. 1. Schematic view of a nanotube with 8 ∗4 atoms distributed over a cylinder 

with azimuthal symmetry. 

and N = 40 , 50 , 60 , 70 (500 realizations) atoms in each direction 

shown in Fig. 1 . This configuration is studied under the change of 

hopping constant between nearest neighbors by considering t i, j = t

for all nearest-neighbor couples. 

Characterization of the transition : A rather simple descrip- 

tion of energy level statistics [45,46] is provided by the ran- 

dom matrix theory. According to Bohigas–Giannoni–Schmit (Berry–

Tabor) conjecture [47] for ensembles of quantum systems with 

non-integrable (integrable) classical counterparts, different statis- 

tics hold for their energy level fluctuations. In order to compare 

the usual spectral correlations between different fluctuations one 

may use proximity index η [48] . 

Let consider a typical quantum system with an ordered set 

of energy levels { E 1 , E 2 , . . . E N } and the nearest-neighbor spacings 

s n = E n +1 − E n . One can define the following ratio [49,50] ˜ r n = 

min (s n +1 ,s n ) 

max (s n +1 ,s n ) 
. The mean value < ̃  r > provides a more way of proxim- 

ity to either a Poisson distribution ( η = 0 ) or a Wigner distribution 

( η = 1 ) via proximity index defined as [48] 

η = 

< 

˜ r > − < 

˜ r > P 

< 

˜ r > W 

− < 

˜ r > P 

. (2) 

considering < ̃  r > P ≈ 0 . 3863 and < ̃  r > W 

≈ 0 . 5359 [50] . 

It follows that, the proximity index organizes itself from being 

close to zero (one) in the insulator (metal) phase to being in be- 

tween these extremal values in the transition regime, correspond- 

ing to a mixing of localized and delocalized states, reflecting a 

measure of localization-delocalization transition. So, according to 

deviation from 1 (0), one could determine approaching to each of 

the extended (localized) states. 

In Fig. 2 we show the disorder-averaged proximity index for 

different values of hopping constant and for N = 10 , 12 , 60 , 70 . As 

is evident with increasing hopping parameter, a transition occurs 

from the localized to delocalized phase. It is clear that for low val- 

ues of hopping parameter, the system follows Poisson statistics cor- 

responding to a localized state of system. It follows that for fully- 
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