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a b s t r a c t 

We introduce the concept of fractional spectral vanishing viscosity (fSVV) to solve conservations laws 

that govern the evolution of steep fronts. We apply this method to the two-dimensional surface quasi- 

geostrophic (SQG) equation. The classical solutions of the inviscid SQG equation can develop finite-time 

singularities. By applying the fSVV method, we are able to simulate these solutions with high accuracy 

and long-time integration with relatively low resolution. Numerical diffusion in fSVV can be tuned by 

the fractional order as needed. Hence, fSVV can also be applied to integer-order conservation laws that 

exhibit steep solutions and evolving fronts. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The general 3D quasi-geostrophic equations, first derived by 

J.G. Charney in the 1940s [1,2] , have been very successful in de- 

scribing major features of large-scale motions in the atmosphere 

and the oceans in the mid-latitudes [3,4] . These 3D equations can 

be reduced to the surface quasi-geostrophic (SQG) equation with 

uniform potential, modeling the potential temperature on the 2D 

boundaries [5,6] . This paper presents a new numerical method for 

the SQG equation 

∂ t θ + u · ∇θ + κ(−�) αθ = 0 , x = (x, y ) ∈ �, (1.1) 

where κ ≥ 0 and α > 0 are parameters, � ∈ R 

2 is a bounded peri- 

odic domain, θ ( x , t ) is a scalar representing the potential tempera- 

ture, and u = (u 1 , u 2 ) is the velocity field determined from θ ( x , t ) 

by the stream function ψ( x , t ) via the auxiliary relations 

(u 1 , u 2 ) = (−∂ y ψ , ∂ x ψ ) , (−�) 
1 
2 ψ = −θ . (1.2) 

The fractional Laplacian (−�) α in this paper is defined as follows 

(−�) αθ ( x , t) = 

∞ ∑ 

i =1 

λα
i c i (t) φi ( x ) , (1.3) 

where (λi , φi ) 
∞ 

i =1 
are the eigenpairs of the standard Laplacian −�

and θ has the expansion θ ( x , t) = 

∑ ∞ 

i =1 c i (t) φi ( x ) . Alternatively, 

� This work was supported by the OSD/ARO/MURI on “Fractional PDEs for Conser- 

vation Laws and Beyond: Theory, Numerics and Applications (W911NF-15-1-0562)”. 
∗ Corresponding author: 

E-mail addresses: george_karniadakis@brown.edu , gk@dam.brown.edu 

(G.E. Karniadakis). 

the fractional operator (−�) α can be defined [7] through the 

Fourier transform 

̂ (−�) αθ (ω) = ω 

2 α̂ θ (ω) , (1.4) 

where ̂ θ is the Fourier transform of θ [8] . When the fractional 

power α = 

1 
2 , the equation (1.1) derived from the more general 

quasi-geostrophic models [9] describes the evolution of the tem- 

perature on the 2D boundary of a rapidly rotating half-space with 

small Rossby and Ekman numbers. Dimensionally, the 2D SQG 

equation with α = 

1 
2 is the analogue of the 3D Navier–Stokes equa- 

tions. A general fractional order α is considered here in order to 

observe the minimal power of Laplacian necessary in the analysis 

and thus make a comparison with the 3D Navier–Stokes equations 

[10,11] . 

The inviscid SQG Eq. (1.1) (i.e., κ = 0 ) is useful in modeling at- 

mospheric phenomena such as the frontogenesis i.e., the forma- 

tion of strong fronts between masses of hot and cold air [5,9] . The 

numerical experiments show that the solution of the SQG equa- 

tion with κ = 0 or κ � 1 emanating from very smooth initial data 

appears to exhibit the most singular behavior [5,12,13] . Since the 

solutions will develop finite-time singularities, very high resolu- 

tion is required for simulations in long time intervals [14] , making 

such computation very expensive. In this paper, we first introduce 

the fractional spectral vanishing viscosity (fSVV) method for solv- 

ing the SQG equation in cases of inviscid ( κ = 0 ) and inviscid-limit 

( κ � 1). The classical spectral vanishing viscosity (SVV) appears to 

be effective in controlling solution monotonicity while preserving 

spectral accuracy. It was initially developed for the resolution of 

hyperbolic equations using standard Fourier spectral methods [15] , 

and later extended to large eddy simulation (LES) [16] . The stan- 

dard SVV method has also been used for high Reynolds number 
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incompressible flows [17,18] and for the fractional Burgers equation 

[19] . Following the fractional Laplacian (−�) α defined in Eq. (1.3) , 

we define a new fSVV operator S 
β
N based on a similar eigenfunc- 

tion expansion; the exact formula of S 
β
N will be given in the next 

section. This operator plays an important role in stabilizing the 

high frequency modes of the numerical solution. 

The remainder of this paper is organized as follows. In 

Section 2 we show how to implement the fSVV method in the 

framework of the spectral element approximation. We propose to 

use an approximate form, which can be readily implemented in 

existing solvers [20] . The advantage of such an approximate form 

is that the computational cost per time-step is roughly the same 

with and without fSVV stabilization. In Section 3 we present the 

numerical results. A brief study of the influence of the fSVV tuning 

parameters on the convergence and accuracy is provided. Then, we 

consider the inviscid and viscous SQG equation with smooth initial 

conditions, and investigate systematically the effectiveness of the 

fSVV method. Finally, we provide a short summary in Section 4 . 

2. Numerical method 

In previous work, we have developed a numerical method 

for computing fractional Laplacians on complex-geometry domains 

[20] , by considering the following Eigen Value Problem (EVP) for 

the Laplacian: 

− �u − λu = 0 , x ∈ �, (2.1) 

proper boundary conditions. (2.2) 

For the problems we consider here we will employ peri- 

odic boundary conditions but in principle any Dirichlet and Neu- 

mann boundary conditions can be applied. The spectral element 

method (SEM) [21,22] is used for solving Eqs. (2.1) and (2.2) . Then, 

Eqs. (2.1) and (2.2) can be written in the discretized form 

A N U − λM N U = 0 , (2.3) 

where N represents the number of the degrees-of-freedom (DoF) 

of the linear system (2.3) for the given number of elements El 

and polynomial degree N in each element. A N is the correspond- 

ing matrix of the Laplacian operator under certain boundary con- 

ditions, M N is the mass matrix, and U is the numerical solution 

of u . The continuous EVP is approximated by the numerical so- 

lution of the eigenpairs (λi , φi ) 
N 
i =1 

of the matrix K = M 

−1 
N A N , and 

λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN . 
Using the numerical eigenpairs ( λi , φi ) of the Laplace opera- 

tor −� from the SEM solution, we can approximate the fractional 

Laplace operator as 

(−�) αu ≈
N ∑ 

i =1 

c i λ
α
i φi , (2.4) 

where c i = (φi , u ) N , and (·, ·) N represents discrete inner product 

base on Gaussian quadrature in every element. The numerical re- 

sults show that this method is converging exponentially for frac- 

tional diffusion equation with smooth solutions. However, the clas- 

sical solutions of the SQG equation can develop finite-time singu- 

larities with smooth initial conditions [14] . Due to this problem, we 

introduce a tunable fractional spectral vanishing viscosity (fSVV) 

method for solving the SQG equation. The variational statement of 

the problem reads as θN , ψ N ∈ V N (�) , ∀ v ∈ V N (�) so that (
∂θN 
∂t 

, v 
)

N 
+ ( u N · ∇θN , v ) N + κ

(
(−�N ) 

αθN , v 
)
N 

+ εN 
(
S 
β
N θN , v 

)
N = 0 , (2.5) 

(
u N , 1 , u N , 2 

)
= 

(
− ∂ y ψ N , ∂ x ψ N 

)
, (−�N ) 

1 
2 ψ N = −θN , (2.6) 

Table 1 

Kinetic Energy and Helicity for the initial data θ 0 with β = 0 . 45 . 

t L 2 -error K ( θ ) H ( θ ) L 2 -error (fSVV) K ( θ ) (fSVV) H ( θ ) (fSVV) 

1 9.1056e −6 14.8044 26.7181 6.2618e −6 14.8044 26.7181 

5 3.8480e −5 14.8044 26.7181 3.8481e −5 14.8044 26.7181 

10 7.6486e −5 14.8044 26.7181 7.6485e −5 14.8044 26.7181 

15 1.1459e −4 14.8044 26.7181 1.1459e −4 14.8044 26.7181 

20 1.5273e −4 14.8044 26.7181 1.5273e −4 14.8044 26.7181 

100 7.6328e −4 14.8044 26.7181 7.6327e −4 14.8044 26.7181 

Table 2 

Numerical results for the inviscid SQG equations, β = 0 . 45 . 

t K ( θ ) H ( θ ) K ( θ ) (fSVV) H ( θ ) (fSVV) 

1 14.804407 26.718074 14.804407 26.718074 

3 14.804407 26.718074 14.804407 26.718074 

5 14.804407 26.718074 14.804199 26.718054 

8 14.923095 26.719398 14.775744 26.715950 

10 NaN NaN 14.751368 26.714122 

15 NaN NaN 14.532270 26.695471 

20 NaN NaN 14.388240 26.6 814 87 

Table 3 

Parameters used for SQG with fSVV. 

Case I Case II Case III Case IV Case V Case VI 

m N N / 2 2 N / 3 N / 2 2 N / 3 N / 2 2 N / 3 

εN 
1 
N 

1 
N 

1 
N 

1 
N 

1 
N 

1 
N 

β 0.8 0.8 1.0 1.0 1.2 1.2 

where εN = O ( 1 N ) , V N (�) = span { φi , i = 1 , . . . , N } and β > 0 is a 

tunable fractional order. The fractional operators (−�N ) α and S 
β
N 

are defined as follows 

(−�N ) 
αu = 

N ∑ 

i =1 

λα
i u i φi , S 

β
N u = 

N ∑ 

i =1 

˜ λβ
i 

u i φi , (2.7) 

where u i = (u, φi ) N and 

˜ λi = 

{
0 , i ≤ m N , 

exp (−( d−i 
m N −i 

) 2 ) λi , i > m N . 
(2.8) 

Here m N can have different forms m N = { √ 

N , N 2 , or 2 N 
3 etc. } 

[16,23] . Of course, the usual spectral approximations of 

Eqs. (1.1) and (1.2) are recovered when εN = 0 or m N = N . 

Next, the ordinary differential Eqs. (2.5) and (2.6) are dis- 

cretized by the second-order Crank–Nicolson scheme. Let L be the 

number of the time steps to integrate up to final time T , then 

�t = T /L . We denote by superscripts the time levels and set the 

initial condition θ0 
N = θN ( x , 0) and θ−1 

N = θ0 
N . Here, we simulate 

with a first-order scheme in the first time step. We look for so- 

lution of (θn +1 
N , u 

n + 1 
2 

N , ψ 

n + 1 
2 

N ) for n = 0 , . . . , L − 1 . We introduce the 

following notation for convenience: 

θ
n + 1 2 

N = 

1 

2 

(θn +1 
N + θn 

N ) , θ
∗,n + 1 2 

N = 

1 

2 

(3 θn 
N − θn −1 

N ) . 

Then, the fully discrete scheme of the SQG equation can be written 

as follows (
θn +1 
N − θn 

N 
�t 

, v 
)

N 
+ ( u 

n + 1 2 

N · ∇θ
∗,n + 1 2 

N , v ) N 

+ κ
(
(−�N ) 

αθ
n + 1 2 

N , v 
)
N + εN 

(
S 
β
N θ

n + 1 2 

N , v 
)
N = 0 , (2.9) 

u 

n + 1 2 

N = 

(
− ∂ y ψ 

n + 1 2 

N , ∂ x ψ 

n + 1 2 

N 
)
, (−�N ) 

1 
2 ψ 

n + 1 2 

N = −θ
∗,n + 1 2 

N . (2.10) 

By the orthogonality of the eigenfunctions we obtain 
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