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a b s t r a c t 

We discuss the impact of local information-based behavioral response on epidemic spreading in social 

networks. By using a pair quenched mean-field approach developed by Mata and Ferreira [Europhys. Lett. 

103 (2013) 48003], we derive a dynamical model governing the epidemic spreading over a random net- 

work with a linear response function and density-dependent epidemic information. A deterministic rela- 

tion between the epidemic threshold and the response parameter is derived according to a quasi-static 

approximation method. It is found that local behavioral response will induce the extinction of the disease 

via rasing the epidemic threshold. Additionally, the theoretical result is supported by stochastic simula- 

tions on an Erd ̈o s–Rényi random network and a Barab ́a si–Albert scale-free network. Simulations show 

that the pair quenched mean-field approach is more accurate than the classical quenched mean-field 

approach. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The theory of complex network involves the network itself 

(structure and its dynamics), dynamics on networks and coupled 

interactions between network and dynamics evolving over the 

network [1] . As a typical process occurring on the network [2] , 

disease transmission dynamics have drawn a wide attention of 

researchers from mathematical, computer, physical and biological 

communities [3–6] . Recently, many researches focus on the cou- 

pled disease-behavior dynamics [7] . Generally speaking, individual 

behavioral response means that individual adjusts its adaptive 

behavior by changing contact numbers or contact objects [8,9] , 

vaccination decision-Erd ̈o s-Rényimaking [10,11] and dynamical 

parameters [12–14] . 

In reality, the epidemic information (denoted by x ) can cause 

individuals to keep social distancing (by wearing protective masks, 

washing hands frequently, avoiding crowded public areas, or 

staying home from work or school or more creative precautions), 

which potentially results in the reduction of individual susceptibil- 

ity (denoted by y ) [13,16] . For a node with k contact number and s 

infected neighbors, if the epidemic information obtained by a node 

is determined by the infection fraction in its neighborhood, then 
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x = s/k and we say it is density-dependent [15–18] ; if the informa- 

tion is only related to the number of infected neighbors, then x = s 

and it is frequency-dependent [19] . To incorporate the information 

effect into the transmission model, it is needed to define a re- 

sponse function y = φ(x ) , which satisfies φ(0) = 0 , 0 ≤ φ(x ) ≤ 1 , 

and φ′ ( x ) < 0. It is relevant to investigate the effect of individual 

behavioral response on the epidemic spreading under the network 

framework with the spatial diffusion [20–22] . 

In [16] , we studied the susceptible-infected-susceptible (SIS) 

model with a response function of linear form, i.e., φ(x ) = 1 −
αx (1 ≥ α ≥ 0) . Meanwhile, the epidemic information is density- 

dependent. By using the heterogeneous mean-field (HMF) ap- 

proach, we obtained the epidemic threshold above which the epi- 

demic spreads over the whole network, depending on the re- 

sponse parameter α. Shang [17] analyzed the case of nonlinear 

form φ(x ) = 1 − α(s/k ) m ( m is a positive integer) and derived 

the epidemic threshold. Recently, Zhang et al. [19] proposed a 

response function of exponential form φ(x ) = (1 − α) x with the 

frequency-dependent epidemic information. Their theoretical anal- 

ysis and simulations show that the epidemic threshold is strongly 

affected by individual response. So, the spread of an infectious dis- 

ease over a network can be controlled by individual behaviorial re- 

sponse. Compared to the immunization and quarantine, individual 

response is a very economic strategy. 

All these researches are based on the HMF model, that has been 

shown to be exact only for the annealed network [23,24] . How to 

analyze this issue on the static or quenched network? [25] How to 
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study the interplay between the network structure and the behav- 

ioral response? 

For the SIS-type model, the microscopic Markov-chain (MMC) 

approach is frequently-used in the analysis of the epidemic spread- 

ing on the quenched network [26] . Van Mieghem et al. developed a 

continuous-time MMC approach and called it as the N-intertwined 

model [5] , which is also referred to as the quenched mean-field 

(QMF) model [28] . Compared to the HMF modeling framework, 

the N-interwind model may be more adapted for the quenched 

network [24] . However, this model is not enough exact since it 

only applies one-order neighbor information. Therefore, a high- 

order mathematical formulation is required to provide a more ex- 

act threshold analysis [27] . Mata and Ferreira proposed a pair-type 

formulation of quenched mean-field model, referred to as the pair 

quenched mean-field model [28] . The pair QMF model makes use 

of the two-order neighbor information and gives a more exact pre- 

diction. More importantly, the epidemic threshold can be deter- 

mined and analyzed by this model. 

In the present work, we would like to give a rigorous deriva- 

tion for the pair QMF model, and show that the pair QMF model is 

adapted for the static randomly connected network with no clus- 

tering [28] . In addition, we analyze the impact of local behavioral 

response on the epidemic spreading over the static network by us- 

ing the pair QMF model, which is still challenging for us since it 

involves the relation between the contact structure and local be- 

havioral response. 

2. An analysis framework 

We assume that an infectious disease follows SIS dynamics on 

a given network with a size N , denoted by G = (V, E) . Generally, 

the contact network is weighted [29] or directed [30] . For sim- 

plicity, we assume that G is a unweighted and undirected net- 

work and hence it is completely determined by its adjacency ma- 

trix A = (a i j ) : if node i links to node j in G , then a i j = 1 ; otherwise 

a i j = 0 . 

In this model, each node may stay in either susceptible (S) or 

infected (I) state. During a infinitesimal time interval (t , t + �t ] , 

an infected node transmits the infectious disease to its susceptible 

neighbor with probability β�t and meanwhile, it recovers and be- 

comes susceptible again with probability γ�t . As usual, we define 

λ = β/γ be the effective spreading rate [4,25] . 

The mathematical model for the static contact network can be 

built by the microscopic Markov-chain approach [26,31] . This ap- 

proach focuses on the dynamic of the probability of each node 

i to be infected at time t , denoted by ρ i . Let X i ( t ) ∈ {0, 1} de- 

note the state of node i at time t [5] . If X i (t) = 0 , node i is sus- 

ceptible; if X i (t) = 1 , node i is infectious. Then ρi = P [ X i (t) = 1] 

and 1 − ρi = P [ X i (t) = 0] , where P [ A ] represents the probability of 

event A occurring. 

2.1. The pair quenched mean-field model 

Mata and Ferreira [28] proposed a pair-type formulation of 

quenched mean-field model, i.e., the pair QMF model. In order to 

develop the pair QMF theory, they introduced a series of simple 

notations: [ A i ] = P [ X i (t) = A ] , which is the probability that node 

i is in the state A ; [ A i , B j ] = P [ X i (t) = A, X j (t) = B ] , which is the 

probability that nodes i and j are in states A and B , respectively; 

[ A i , B j , C l ] is the extension to three nodes. In addition, they also de- 

fined specific pair-type variables: ω i j = [0 i , 0 j ] , φi j = [0 i , 1 j ] , φ̄i j = 

[1 i , 0 j ] , ψ i j = [1 i , 1 j ] . It is easy to know that pair-type variables 

must satisfy 

ψ i j = ρ j − φi j , φ̄i j = ρi − ψ i j = ρi − ρ j + φi j , ω i j = 1 − ρi − φi j . 

Within this perspective, they built a system describing the SIS 

epidemic dynamics on the network G , which takes the form 

d 

dt 
ρi = −γ ρi + β

N ∑ 

j=1 

φi j a i j 

d 

dt 
φi j = −γφi j − βφi j + γψ i j 

+ β
∑ 

l∈N ( j) 
l � = i 

[0 i , 0 j , 1 l ] − β
∑ 

l∈N (i ) 
l � = j 

[1 l , 0 i , 1 j ] (1) 

where N (i ) denotes the neighborhood of node i . In order to close 

the above equations, the authors used the standard approximation 

[28,32] 

[ A i , B j , C l ] � 

[ A i , B j ][ B j , C l ] 

[ B j ] 
. (2) 

In Appendix A , we prove that this approximation holds for the ran- 

dom network with no clustering. 

After performing a quasi-static approximation for t → ∞ , the 

authors found that the epidemic threshold can be determined by 

the largest eigenvalue of the Jacobian matrix L , which is given by 

L i j = −
(

γ + 

β2 k i 
2 β + 2 γ

)
δi j + 

β(2 γ + β) 

2 β + 2 γ
a i j . (3) 

Here, δij is the Kronecker symbol and k i is the degree of node i . 

2.2. The derivation of the pair QMF equations 

We will apply the total probability formula to derive the pair 

QMF equations for the SIS epidemic model (1) . For the sake of the 

following analysis, we first present a lemma. 

Lemma 1. For each a subset of nodes in G, V 

∗ (i.e., V 

∗ ⊂ V), we as- 

sume that a probability of each node i ∈ V 

∗ to be infected, denoted 

by ρ i is given, then the number of infected nodes in this subset is a 

stochastic variable ξ ∈ [0, | V 

∗|] ( | V 

∗| denotes the number of the ele- 

ments in set V 

∗) and its first and second order moment satisfy 

E [ ξ ] = 

∑ 

i ∈ V ∗
ρi , E [ ξ 2 ] = 

∑ 

i ∈ V ∗
ρi + 

∑ 

i 1 � = i 2 
ρi 1 ρi 2 , 

respectively. 

This lemma is easily proved by the mathematical induction. In 

fact, the first order moment formula has been proved in [31,33] . 

The second order formula can be justified by a simple example 

when | V ∗| = 3 . At this time, E [ ξ 2 ] = 1 2 × [ ρ1 (1 − ρ2 )(1 − ρ3 ) + ρ2 

(1 −ρ1 )(1 − 
 3 ) + ρ3 (1 −ρ1 )(1 −ρ2 )] + 2 2 × [ ρ1 ρ2 (1 − ρ3 ) + ρ1 ρ3 

(1 − ρ2 ) + ρ2 ρ3 (1 − ρ1 )] + 3 2 × ρ1 ρ2 ρ3 = ρ1 + ρ2 + ρ3 + 2(ρ1 ρ2 + 

ρ2 ρ3 + ρ1 ρ3 ) , which accords with the conclusion from Lemma 1 . 

In the following, we derive system (1) . By the total probability 

formula, we have 

P [ X i (t + �t) = 1] = P [ X i (t) = 1] P [ X i (t + �t) = 1 | X i (t) = 1] 

+ P [ X i (t) = 0] P [ X i (t + �t) = 1 | X i (t) = 0] . (4) 

Denote k inf ( i ) be the number of infected nodes in the neighborhood 

of node i . Note that 

P [ X i (t) = 0] P [ X i (t + �t) = 1 | X i (t) = 0] 

= P [ X i (t + �t) = 1 , X i (t) = 0] 

= 

k i ∑ 

s =0 

P [ X i (t + �t) = 1 , X i (t) = 0 , k inf (i ) = s ] 

= 

k i ∑ 

s =0 

P [ X i (t + �t) = 1 | X i (t) = 0 , k inf (i ) = s ] 
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