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a b s t r a c t 

Regarding costly punishment of two types, especially peer-punishment is considered to decrease the av- 

erage payoff of all players as well as pool-punishment does, and to facilitate the antisocial punishment 

as a result of natural selection. To solve those problems, the author has proposed the probabilistic peer- 

punishment based on the difference of payoff. In the limited condition, the proposed peer-punishment 

has shown the positive effects on the evolution of cooperation, and increased the average payoff of all 

players. 

Based on those findings, this study exhibits the characteristics of the evolution of cooperation by the 

proposed peer-punishment. Those characteristics present the significant contribution to knowledge that 

for the evolution of cooperation, a limited number of players should cause severe damage to defectors at 

the large expense of their payoff when connections between them are sparse, whereas a greater number 

of players should share the responsibility to punish defectors at the relatively small expense of their 

payoff when connections between them are dense. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many studies discuss the effect of costly punishment that a 

player pays some cost, and punishes a defector on the emergence 

and the increase of cooperators (i.e. the evolution of coopera- 

tion). The previous studies [ 1 –4 ] show that costly punishment en- 

hances cooperation in group interactions among players (i.e. pub- 

lic goods games), whereas some studies question the significance 

of costly punishment for the evolution of cooperation. For exam- 

ple, the studies [ 5 –7 ] propose the evolutionary puzzle of costly 

punishment, and also Dreber et al. [8] show that costly punish- 

ment increases the level of cooperation, whereas it decreases the 

average payoff. Rand and Nowak [9] point out that costly pun- 

ishment facilitates the antisocial punishment like retaliation of a 

defector on a cooperator as a result of natural selection. On the 

other hand, Fowler [3] considers nonparticipants in voluntary pub- 

lic goods games, and shows that punishment can allow the evo- 

lution of any types of strategy. O’ Gorman et al. [10] find that al- 

lowing a single player to punish increases cooperation to the same 

level as allowing each group member to punish, and results in 

greater group profits. The relaxation of both the fixed fine and the 

cost of punishment can explain both the spontaneous emergence 

of punishment and the prevention of the prevalence of defectors 

[11,12] . 
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Note that there are two alternative notions regarding costly 

punishment, i.e. peer-punishment [ 1 –14 ] and pool-punishment 

[ 15 –17 ]. Peer-punishment applies direct face to face punishment, 

whereas pool-punishment is based on multi-point, collective in- 

teraction among group members. The previous paper [18] refers 

to the following relevant studies. As for peer-punishment in the 

public goods game, Helbing et al. [19] show that the consider- 

ation of punishment allows us to understand the establishment 

and spreading of cooperators who punish defectors. Szolnoki et 

al. [20] study the impact of pool-punishment in the spatial pub- 

lic goods game with cooperators, defectors, and pool-punishers 

as the three competing strategies. Helbing et al. [19,21,22] par- 

ticularly discuss the efficiency of pool-punishment in maintain- 

ing socially advantageous states contrasted with that of peer- 

punishment. Chen et al. [23] show that in the public goods game, 

the introduction of punishment has a positive effect on coopera- 

tion especially for large group size, whereas an intermediate group 

size is not best for cooperation. Sasaki et al. [24] introduce the 

deposit that will be refunded as long as the committers faithfully 

cooperate in the donation game, and punish free riders and non- 

committers. Perc [25] shows that pool-punishment in structured 

populations is sustainable, but only if second-order free-riders are 

sanctioned as well, and to such a degree that those free-riders can- 

not prevail. Those free-riders are eliminated by means of a discon- 

tinuous phase transition that shifts the evolution rather explosively 

in favor of the punishers. 
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Regarding costly punishment of two types, this study discusses 

the evolution of cooperation by peer-punishment in the spatial 

prisoner’s dilemma game of pairwise interactions. As described be- 

fore, there is some criticism regarding peer-punishment [8,9] . In 

addition, the subject experiment of Wu et al. [26] shows that costly 

punishment does not always increase cooperation in pairwise in- 

teractions. To solve those problems, the previous study [18] has 

proposed the probabilistic peer-punishment based on the differ- 

ence of payoff as follows. Firstly, every player punishes only de- 

fectors to prevent the antisocial punishment. Secondly, the degree 

of punishment dynamically changes based on the payoff of every 

punishing player, and the probability that he/she punishes others is 

directly proportional to the difference between his/her payoff and 

the payoff of others. In the limited condition, the proposed peer- 

punishment has shown the positive effects on the evolution of co- 

operation, and increased the average payoff of all players. 

Based on those findings, this study exhibits the characteristics 

of the evolution of cooperation by the proposed peer-punishment, 

especially how the number of cooperators, the number of defec- 

tors, and the average payoff of all players increase or decrease de- 

pending on the increase of the coefficient of punishment that is 

the main control variable of the proposed peer-punishment. Those 

characteristics present the significant contribution to knowledge 

that for the evolution of cooperation, a limited number of players 

should cause severe damage to defectors at the large expense of 

their payoff when connections between them are sparse, whereas 

a greater number of players should share the responsibility to pun- 

ish defectors at the relatively small expense of their payoff when 

connections between them are dense. 

2. Model 

The model of this study is similar to Nowak and May’s ba- 

sic framework of the spatial prisoner’s dilemma game [27] . Ev- 

ery player has each strategy of two types, defection ( = defector) 

and cooperation ( = cooperator), matches the other players having 

connections with him/her, and then acquires the cumulative pay- 

off from all matches. In this study, N is the number of all players, 

players i and j are two players of the match ( i � = j , 1 ≤ i, j ≤ N ), 

s ( i ) and s ( j ) are their strategy, and P ( i ) and P ( j ) are their payoff. By 

utilizing the payoff matrix A of Eq. (1) , P ( i ) can be expressed as the 

following Eq. (2) . Note that s ( i ) and s ( j ) are either (1 0) (coopera- 

tor) or (0 1) (defector) of unit vectors. O ( i ) denotes the set of the 

other players having connections with player i . 

A = 

(
1 0 

b 0 

)
( 1 < b ≤ 2 ) (1) 

P ( i ) = 

∑ 

j∈ O ( i ) 
s ( i ) As ( j ) 

T 

( i � = j, 1 ≤ i, j ≤ N ) 
(2) 

The parameters N, b , and the initial ratio of the number of de- 

fectors to the number of cooperators of this study follow those of 

the previous study [18] . That is, N = 10 0 0, b = 1.5, and this initial ra- 

tio approximately equals one to one. Defectors and cooperators are 

randomly distributed in every simulation run. The spatial structure 

of connections of this study is the locally connected ring with pe- 

riodic boundary conditions of Watts and Strogatz [28] of N players 

(vertices). Each vertex of the lattice exhibits each player, and the 

number of players having connections with player i is k ( i ). The av- 

erage of k ( i ) ( < k > ) can be expressed as follows: < k > = 

1 
N 

∑ 

1 ≤i ≤N 

k (i ) , 

and this study deals with three different cases of < k > = 4, 8, and 

16, respectively. The topology of connections defining the relation- 

ship of every player is three types, i.e. the regular [28] , the (com- 

pletely) random [28] , and the scale-free known as the Barabási–

Albert model [29] also following the previous study [18] . The detail 

Fig. 1. This figure is the same as Fig. 1 of the previous paper [18] , and shows the 

sample initial state of the regular topology of connections of < k > = 4. The regular 

topology of connections means that the number of players having connections with 

player i ( = k ( i )) is the same regarding all players. The spatial structure of connec- 

tions is defined as the one dimensional lattice of periodic boundary conditions, and 

each vertex of the lattice exhibits each player. Note that this figure has only twenty 

players ( N = 20) in order to make clear the spatial structure of connections. The 

ratio of the number of defectors (red) to the number of cooperators (blue) approx- 

imately equals one to one, and defectors and cooperators are randomly distributed 

in every simulation run. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article). 

of the construction of each type of the topology of connections is 

described in the Methods of the previous study [18] . Fig. 1 shows 

the sample initial state of the regular topology of connections of 

< k > = 4 [18] . Note that this figure has only 20 players in order to 

make clear the spatial structure of connections. 

As described in the Introduction, this study exhibits the charac- 

teristics of the evolution of cooperation by the probabilistic peer- 

punishment based on the difference of payoff [18] . In the following 

formulation of the proposed peer-punishment, we utilize the num- 

ber of players j ∈ O ( i ) that satisfies both P ( j ) > P ( i ) and s ( j ) = (0 1) 

(defector) as n ( i ), and r as the coefficient of punishment (0 ≤r ≤ 1). 

As shown in the following Eqs. (3) and ( 4 ), when P ( i )(1 −rn ( i )) > 0 

and P ( i ) < P ( j ) ≤ 2 P ( i ) hold, player i pays the cost rP ( i ) and pun- 

ishes player j of s ( j ) = (0 1) by causing the damage rP ( i ) to player 

j with the probability q i ( j ). When P ( i )(1 −rn ( i )) > 0 and P ( j ) > 2 P ( i ) 

hold, q i ( j ) equals 1. The decrease of payoff by punishing and pun- 

ished is independently calculated regarding all players, and finally 

P ( i ) ′ is set to 0 when it becomes a negative value. Therefore, P ( i ) ′ 
and P ( j ) ′ cannot be negative. Note that in the case of r = 0 and 1, 

the proposed peer-punishment does not work because rP ( i ) equals 

0 in the case of r = 0, and P ( i )(1 −rn ( i )) > 0 never holds in the case 

of r = 1 when P ( i ) > 0 and n ( i ) ≥ 1 hold. 

q i ( j ) = 

P ( j ) − P ( i ) 

P ( i ) 
, P ( i ) > 0 (3) 

P ( i ) 
′ = P ( i ) − rP ( i ) 

P ( j ) 
′ = P ( j ) − rP ( i ) (4) 

After the payoff of all players changes due to all punishing and 

punished activities, as the following Eq. (5) , player i chooses the 

strategy of player j max ∈ i ∪ O ( i ) for his/her strategy of the matches 

of the next generation. When two or more players have the max- 
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