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a b s t r a c t

The classification of Seifert manifolds was given in terms of numeric data by Seifert (1933),
and then generalized byRaymond (1968) andOrlik andRaymond (1968) to circle actions on
closed 3d manifolds. In this paper, we further generalize the classification to circle actions
on 3d manifolds with boundaries by adding a numeric parameter and a graph of cycles.
Then, we describe the rational equivariant cohomology of 3d manifolds with circle actions
in terms of ring, module and vector-space structures. We also compute equivariant Betti
numbers and Poincaré series for these manifolds and discuss the equivariant formality.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The classification of closed 3d manifolds with ‘‘nice’’ decompositions into circles was given by Seifert [1] in terms of
principal Euler number b, orientability ϵ and genus g of the underlying 2d orbifolds, and pairs of coprime integers (mi, ni)
called Seifert invariants. Hence, these manifolds were given the name Seifert manifolds.

Later, the classification was generalized by Orlik and Raymond [2,3] to circle actions on closed 3d manifolds allowing
fixed points and special exceptional orbits. Orlik and Raymond found that in their case the underlying 2d orbifolds have circle
boundaries contributed by the fixed points and special exceptional orbits. Hence, besides the four types of numeric data used
by Seifert, two more types of numeric data were introduced by Orlik and Raymond: the number f of fixed components and
the number s of special exceptional components. Then, Orlik and Raymond proved the following:

Theorem (Orlik-Raymond Classification of closed 3d S1-manifolds, [2,3]). Let S1 act effectively and smoothly on a closed,
connected smooth 3d manifold M. Then, the orbit invariants{

b; (ϵ, g, f , s); (m1, n1), . . . , (ml, nl)
}

determineM up to equivariant diffeomorphisms, subject to certain conditions. Conversely, any such set of invariants can be realized
as a closed 3d manifold with an effective S1-action.

The first goal of this paper is to further generalize the Orlik–Raymond Classification Theorem to circle actions on compact
3d manifolds, allowing boundaries. By the classification of circle actions on closed 2d manifolds, those boundaries have to
be tori T, spheres S2, projective planes RP2 or Klein bottles K . Our approach relies on a careful discussion on the equivariant

E-mail address: he.chen@husky.neu.edu.

http://dx.doi.org/10.1016/j.geomphys.2017.05.020
0393-0440/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.geomphys.2017.05.020
http://www.elsevier.com/locate/geomphys
http://www.elsevier.com/locate/geomphys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2017.05.020&domain=pdf
mailto:he.chen@husky.neu.edu
http://dx.doi.org/10.1016/j.geomphys.2017.05.020


C. He / Journal of Geometry and Physics 120 (2017) 242–261 243

neighbourhoods of non-principal orbits and boundaries. Let t be the number of torus boundaries and G be a graph of cycles
to keep track of the boundary types S2, K , RP2, we get the following:

Theorem3.1. Let the circle group S1 act effectively and smoothly on a compact, connected 3dmanifoldM, possiblywith boundary.
Then, the orbit invariants{

b; (ϵ, g, f , s, t); (m1, n1), . . . , (ml, nl); G
}

consisting of numeric data and a graph of cycles, determine M up to equivariant diffeomorphisms, subject to certain conditions.
Conversely, any such set of invariants can be realized as a 3d manifold with an effective S1-action.

Using the Orlik–Raymond Theorem, one can compute the fundamental groups, ordinary homology and cohomology with
Z or Zp coefficients for closed 3d S1-manifolds, (cf.[4–7]). In this paper, we are instead interested in equivariant topological
invariants.

Hence, the second goal of this paper is to describe the Q-coefficient equivariant cohomology of compact 3d manifold M
with circle action. Ourmain strategy is to apply the equivariantMayer–Vietoris sequence to a decomposition of themanifold
M into a fixed-point-free part and a neighbourhood of the fixed-point set. Then, we get

Theorem 4.2. Let M be a compact connected 3d manifold(possibly with boundary) with an effective S1-action, and F be its
fixed-point set(possibly empty), then there is a short exact sequence of cohomology groups in Q coefficients:

0 → H∗

S1 (M) → H∗(M/S1) ⊕

(
Q[u] ⊗ H∗(F )

)
→ H∗(F ) → 0

Using this theorem, we can describe the ring, module and vector-space structures of the equivariant cohomology H∗

S1
(M)

in details. Furthermore, we will calculate equivariant Betti numbers and Poincaré series, and discuss a numeric condition for
equivariant formality.

2. S1-actions on 2d manifolds and closed 3d manifolds

In this section, we will recall the classification of effective S1-actions on closed manifolds in dimensions 2 and 3, which
will be crucial for our classification of effective S1-actions on 3dmanifolds with boundaries. All these results are well known,
and can be found in greater details from the original papers by Orlik and Raymond [2,3] or the notes and books [4,8–10].

2.1. Some basic facts about group actions on manifolds

Throughout the paper, we always assume that amanifoldM is compact, smooth and connected, and a groupG is compact,
unless otherwisementioned. For convenience,wewill denote aG-action onM asG ↷ M . The quotientM/G is called theorbit
space of theG-action onM . For any point x inM , letGx = {g ∈ G | g ·x = x} be its stabilizer.WewriteMG

= {x ∈ M | Gx = G}

for the set of fixed points. If Gx = G for every x ∈ M , we say that the G-action onM is trivial. If Gx = {1} for every x ∈ M , we
say that the G-action on M is free. If the intersection ∩x∈MGx = {1}, we say that the G-action on M is effective. Throughout
this paper, group actions are usually assumed to be effective, unless otherwise mentioned.

For any orbit G · x, let Vx be an orthogonal complement of Tx(G · x) in TxM . The infinitesimal action of Gx on TxM gives a
linear isotropy representation Gx ↷ Vx. Then, the normal bundle of the orbit G · x can be written as

G×GxVx =
{
[g, v] | (g, v) ∼ (gh, h−1v) for any h ∈ G

}
with a G-action induced from the canonical G-action on the left of the first factor of G × Vx.

The following theorem, proved byKoszul [11], equivariantly identifies the normal bundlewith the tubular neighbourhood
of an orbit G · x.

Theorem 2.1 (The slice theorem, [11]). There exists an equivariant exponential map

exp : G×GxV −→ M

which is an equivariant diffeomorphism from an open neighbourhood of the zero section G×Gx{0} in G×GxVx to an equivariant
neighbourhood of G · x in M.

Thus, an equivariant neighbourhood of the orbit G · x can be specified in terms of the stabilizer Gx and the isotropy
representation of Gx on the normal vector space.

Similar to the ordinary non-equivariant case, the equivariant identification between normal bundles and neighbourhoods
generalizes beyond single orbit to submanifold and boundary, cf. Kankaanrinta [12].
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