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a b s t r a c t

It is well known that in some cases the spectral parameter has a group interpretation. We
discuss in detail the case of Gauss–Codazzi equations for isothermic surfaces immersed in
E3. The algebra of Lie point symmetries is 4-dimensional and all these symmetries are also
symmetries of the Gauss–Weingarten equations (which can be considered as so(3)-valued
non-parametric linear problem). In order to obtain a non-removable spectral parameter
one has to consider so(4, 1)-valued linear problem which has a 3-dimensional algebra of
Lie point symmetries. Themissing symmetry introduces a non-removable parameter. In the
second part of the paper we extend these results on the case of isothermic immersions in
arbitrary multidimensional Euclidean spaces. In order to simplify calculations the problem
was formulated in terms of a Clifford algebra.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Integrable systems of nonlinear partial differential equations often arise as compatibility conditions for an associated
linear system, known as the Lax pair, with the so called spectral parameter (see, for instance, [1]). On the other hand, in the
geometry nonlinear systems (Gauss–Codazzi equations) with associated linear problems (Gauss–Weingarten equations) are
ubiquitous but the linear problem is usually without a parameter. Therefore it is natural to expect that one of symmetries of
the nonlinear system is not a symmetry of the linear problem and can be used to produce the spectral parameter, provided
that this parameter is non-removable (i.e., it cannot be removed by a gauge transformation). This idea has been suggested
as a working criterion of integrability [2,3], soon formulated in a purely algebraic way [4,5]. Around the same time the same
idea has been formulated in terms of coverings [6]. Since then many authors used Lie symmetries to obtain or discuss Lax
pairs with non-removable parameter, see [7–11]. More powerful approach by using coverings has been developed in this
context as well, see [12,13].

The group interpretation of the spectral parameter is rather natural but still surprisingly small number of cases is
checked and confirmed. In the first part of this paper we discuss isothermic immersions in E3 [14–16]. The corresponding
Gauss–Codazzi equations have 4-dimensional algebra of Lie point symmetries. All these symmetries are symmetries of the
so(3)-valued linear problem (classical Gauss–Weingarten equations), as well. This is consistent with non-existence of an
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so(3)-valued Lax pair for isothermic surfaces. In order to obtain the classical Lax pair for isothermic surfaces one has to
consider a largermatrix algebra, namely so(4, 1). Then, one of the symmetries of Gauss–Codazzi equations is not a symmetry
of the so(4, 1)-valued linear problem and we recover the Lax pair with a non-removable spectral parameter. In the second
part of the paperwe extend these results on the case of isothermic surfaces immersed inmultidimensional Euclidean spaces.
Thus we successfully checked that yet another class of integrable systems admits the group interpretation of the spectral
parameter.

2. Lie point symmetries of Gauss–Codazzi equations for isothermic surfaces

Isothermic surfaces (isothermic immersions in E3) are defined by the property that their curvature lines admit conformal
(‘‘isothermic’’) parameterization [14,16]. In otherwords, there exist conformal coordinates such that both fundamental forms
are diagonal:

I = e2θ (du2
+ dv2), II = e2θ (k1du2

+ k2dv2), (1)

where θ = θ (u, v) defines conformal coordinates while k1 = k1(u, v) and k2 = k2(u, v) are principal curvatures. These
functions have to satisfy the system of Gauss–Codazzi equations:

θ,uu + θ,vv + k1k2e2θ = 0,
k1,u + (k1 − k2)θ,u = 0,
k2,v + (k2 − k1)θ,v = 0.

(2)

Lie point symmetries of (2) can be computed in the standard way (see [17]) applying the prolongation pr(v) of the vector
field v:

v = ξ∂u + η∂v + φ∂θ + B1∂k1 + B2∂k2 , (3)

where ξ , η and φ are functions of u, v, θ, k1 and k2. The prolongation pr(v) is computed in the standard way:

pr(v) = v + φu∂θ,u + φv∂θ,v + φuu∂θ,uu + φuv∂θ,uv + Bu
1∂k1,u + Bv

2∂k2,v ,

where other terms are omitted because θ,vv , k1,u, k2,v and higher derivatives can be eliminated using (2). W recall that

φu
:= Du(Φ − ξθ,u − ηθ,v) + ξθ,uu + ηθ,uv,

Bu
1 := Du(B1 − ξk1,u − ηk1,v) + ξk1,uu + k1,uv,

φuv
:= Duv(Φ − ξθ,u − ηθ,v) + ξθ,uuv + ηθ,uvv,

(4)

and analogous formulae for φu, φuu and Bv
2 , see [17]. Finally, Du denotes the total derivative with respect to u.

Standard symmetry procedures (see, for example [17]) yield the system of the determining equations
ξ = ξ (u), η = η(v), φ = φ(θ )
B1 = B1(v, k1, θ ), B2 = B2(u, k2, θ ),
ξ,uu = η,vv = φ,θθ = 0, ξ,u = η,v,

0 = B1,θ + B1 − B2 + (k1 − k2)(φ,θ − B1,k1 ),
0 = B2,θ + B2 − B1 + (k2 − k1)(φ,θ − B2,k2 ),

0 = 2φ − φ,θ + 2ξ,u +
B1

k1
+

B2

k2
.

(5)

To obtain these we need to prolong two last equations of (2). We point out that this pair of equations is invariant with
respect to simultaneous change of variables u ↔ v and k1 ↔ k2. Using ordinarily understood linear independence for
differential polynomials, we obtain that B1 = B1(v, k1, θ ), B2 = B2(u, k2, θ ), and ξ = ξ (u), η = η(v). Here also we find
φ = φ(θ ). To get the last line, and the condition ξu = η,v , together with ξ,uu = 0 = η,vv , we need to use the first equation of
(2) and substitute it into its prolonged version (eliminating, for instance, θ,vv).

Solving Eqs. (5) we get
ξ = ξ (u), ξ,uu = 0 → ξ = c1 + c0u,
η = η(v), η,vv = 0 → η = c2 + c̃0v,

ξ,u = η,v → c̃0 = c0, φ,θθ = 0 → φ = c3 + c5θ,

B1 = B1(v, k1, θ ), B2 = B2(u, k2, θ ),

(6)

where c0, c1, c2, c3 and c5 are constants. Note that conditions ξ,uu = 0 = η,vv follow from ξ,u = η,v since each of ξ, η is a
function of one variable. The last line of (5) implies that

B1 = k1A1(θ, v), B2 = k2A2(θ, u) (7)

and substituting these into the preceding two lines of (5), and once again into the last line, we obtain

A2 = A1 = c4, c5 = 0, (8)

where c4 is constant. Finally, we arrive at the following result.
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