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h i g h l i g h t s

• We introduce a model for the attachment of curvature-inducing proteins on a membrane.
• The stability of the filament shape is characterized by the protein recruitment parameters.
• The dynamics of protein aggregation leads to the formation of regions of high and low curvatures.
• Phase-coarsening eventually leads to a filament with uniform curvature.
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a b s t r a c t

We explore a simplified macroscopic model of membrane shaping by means of curvature-sensing BAR
proteins. Equations describing the interplay between the shape of a freely floating filament in a fluid and
the adhesion kinetics of proteins are derived frommechanical principles. The constant curvature solutions
that arise from this system are studied using weakly nonlinear analysis. We show that the stability of the
filament’s shape is completely characterized by the parameters associated with protein recruitment and
establish that in the bistable regime, proteins aggregate on the filament forming regions of high and low
curvatures. This pattern formation is then followed by phase-coarsening that resolves on a time-scale
dependent on protein diffusion and drift across the filament, which contend to smooth and maintain the
pattern respectively. The model is generalized for multiple species of BAR proteins and we show that the
stability of the assembled shape is determined by a competition between proteins attaching on opposing
sides.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Self-assembly is a ubiquitous phenomenon that exists over a
large range of length scales in systems both physical and biolog-
ical in nature. Examples range from the astronomically large, such
as the formation of galaxies and planetary systems [1], to the nano-
scale, such as the technology of DNA origami [2]. In its most ba-
sic definition, such self-assembling systems are: (i) comprised of
parts or components that exhibit interaction; (ii) at thermody-
namic nonequilibrium initially, but tend to equilibrium; (iii) ther-
modynamically closed [3,4]. Self-assembly is a process of energy
minimization that ends in a final, well-defined structure that is
uniquely determined by the properties of the interacting com-
ponents which remain unchanged during the transition to ther-
modynamic equilibrium. Global order in the system is encoded
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in the initial set-up and the specific relationships that exist be-
tween components; no additional energy is necessary to drive the
process [5].

An interesting example of self-assembly is found in the shaping
of biological membranes, in particular lipid bilayers, that occur
at the cellular level. Such objects are important building blocks
which not only coat parts of the cell, such as the nucleus and the
endoplasmic reticulum [6], but also form independent biological
objects within the cell, such as vesicles and tubules which are
necessary for the intra-cellular transport of wastes, nutrients, and
proteins [7,8].

The primary mechanism believed to be responsible for the
highly curved geometries observed involves the recruitment
of membrane-shaping proteins from the cellular fluid, such as
the BAR (Bin/Amphiphysin Rvs) and ENTH (Epsin N-Terminal
Homology) protein families [9–12]. Such proteins bind directly
onto the bilayer by means of electrostatic interactions and bend
it by the insertion of amphipathic helix functional groups [13,14],
with the magnitude of the induced curvature dependent on the
depth of insertion into the lipid monolayer [15] and the number
of attaching proteins [16]. Moreover, the BAR and ENTH families
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act as sensors of curvature [17,18], meaning that the shape of
the membrane determines the adhesion kinetics of the proteins.
In other words, we have a system where the curvature of the
membrane regulates the concentration of attached proteins, and
vice versa, in an interacting process [19].

Previous investigations on the subject have been from two
perspectives; namely, computational, involving large-scale coarse-
grain simulations [20–22], and theoretical, which consider the
minimization of membrane free energies or electrical potentials
to determine the nature of equilibrium configurations. In the
former, many interesting aspects of BAR proteins have been found,
including the linear aggregation of proteins, leading to membrane
tubulation [23,24], and membrane fissioning, leading to closed
tubular networks [25]. From a theoretical point of view, the
effects of single BAR proteins, in the context of electric fields and
potentials [26], and a continuum of them attaching to the lipid
bilayer have also been studied, but not to the same extent as
computational models. In particular, equilibrium configurations of
the self-assembled system, and the role that BAR proteins play in
the stability of these final shapes, are considered. Early research
on the subject studied not the formation of vesicles or other
independent biological objects, but rather the oscillations that can
exist on the cell-membrane known as circular dorsal ruffles [27,28].
It is found that BAR proteins provide a stabilization of the
geometry; a point which has been further investigated in the
context of flatmembrane geometries [29] and pearling instabilities
in cylindrical geometries [30].

As a starting point to understand this phenomenon, we derive
the simplest, non-trivial system that allows us to explore the
interplay between an underlying geometry and curvature-sensing
proteins. We focus on the shaping of a filament and derive
a macroscopic model for time-dependent self-assembly using
concepts from continuum and statistical mechanics. The result is
a thermodynamically consistent system of equations in terms of
experimental parameters that allows us to further explore the role
of the filament mechanics, the adhesion kinetics of the attaching
proteins, and the interactions between these components.

2. Mathematical model

Our mathematical model is based on the following assump-
tions: (i) We consider a thermodynamically closed system in 2D
space which only contains the main continuum, the curvature-
inducing proteins, and the interactions between these. There is no
forcing or energy input from the outside environment; (ii)We take
the continuum to be a 1D filament; explicitly, an elastic rod which
is inextensible and unshearable with constant length L that is pa-
rameterized with an arc-length coordinate s ∈ [0, L]. This geom-
etry is a simplification of the 2D lipid bilayer without transverse
mechanical effects and area dilation, despite the membrane being
able to endure strains of 2%–3% [31]. The dependent variable of in-
terest is the filament curvature κ(t, s) at time t; (iii) The contin-
uum freely floats in a fluid which is populated with a single type
of BAR proteinmodeled as a thin filament with constant curvature.
The proteins induce curvature along one principal direction which
is always aligned with that of the main filament and they have a
thermodynamically favorable target curvature κt . The number of
bound proteins per unit length is given by c(t, s).

Additionally, wemake two important thermodynamic assump-
tions. (iv) We suppose that protein–membrane interactions are at
thermodynamic equilibrium with respect to energy exchange be-
tween these components. A number of theoretical models have
made this same assumption [30,28] as well as computationalmod-
els [32]. In the latter case, results predicted by simulations have
been experimentally verified [25], which suggests that this as-
sumption is valid when studying qualitative aspects of the mathe-
matical model.

(v) There are three stages in the protein attachment cor-
responding to the unbound, transition, and bound states. An
unattached protein floating in the cellular fluid is assumed to have
zero bending energy (unbound state), but when the protein at-
taches to themain filament, it deforms itself tomatch the curvature
of the filament and acquires bending energy dictated by bending
stiffness BBAR (bound state). We suppose there is an intermediary
step to attachment whereby the protein acquires bending energy
determined by bending stiffness Bts, which is not necessarily the
same as BBAR, andwe assume that this transition state is sufficiently
long-lived such that thermodynamic equilibrium is reached.

We now derive equations describing the time-evolution of
κ(t, s) and c(t, s).

2.1. Equations for filamentary mechanics

We model the membrane cross-section as a Kirchhoff elastic
filament whose motion is confined to a plane [33,34]. The position
of the filament’s centerline is denoted by r(t, s) and the curve is
geometrically described by a local director basis {d1, d2, d3}which
is right-handed and orthonormal. The vectors d3 and d1 are the
tangent and normal Frenet vectors respectively, whilst d2 points
perpendicularly outwards from the plane and is constant with
respect to both t and s (see Fig. 1). To complete the geometric
description, we introduce a strain vector u = κd2 and spin vector
w = w2d2, with w2 being a measure of the angular velocity of the
director basis, so that we have the following kinematic relations:

∂r

∂s
= d3, (1)

∂di

∂s
= u × di, (2)

∂di

∂t
= w × di. (3)

Defining the velocity of the rod in the local basis v = v1d1 +

v3d3 = ∂r/∂t , we use (1)–(3) to obtain geometric constraints for
v1 and v3:

0 =
∂v1

∂s
+ κv3 − w2, (4)

0 =
∂v3

∂s
− κv1, (5)

as well as a compatibility relation, given that ∂2di/∂s∂t = ∂2di/
∂t∂s:

∂κ

∂t
=

∂w2

∂s
. (6)

Considering the mechanics of the continuum, we suppose that
the only contribution to the applied force comes from fluid drag,
which is proportional to the velocity of the filament v. More
specifically, the applied force per unit length is f = f1d1 + f3d3 =

−η1v1d1 − η3v3d3, where η1 and η3 are the drag coefficients
per unit length in the normal and tangential directions. Given
that we are interested in motions that occur at low Reynolds
numbers, it is reasonable to assume that the inertial terms can be
neglected so that the resulting dynamics are first order in time [35].
Furthermore, we use slender body theory to simplify the applied
force so that η1 = 2η3, where η3 = 2πµ/A ln (L/r) for a filament
of length L, cross-sectional area A, and radius r ≪ L which is
submersed in a fluid of dynamic viscosity µ [36]. Introducing the
resultant force n = n1d1 + n3d3 and moment m, we balance linear
and angular momenta to obtain two equations of motion [37]:

∂n

∂s
+ f = ρA

∂2r

∂t2
, (7)
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