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h i g h l i g h t s

• Analysis of an optical dispersive shock wave in a defocusing colloidal medium.
• Powerful technique to derive leading and trailing edges of dispersive shock waves.
• Near perfect predictions for the properties of the dispersive shock wave.
• Useful model for comparisons with experimental work in colloidal media.
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a b s t r a c t

The propagation of an optical dispersive shock wave, generated from a jump discontinuity in light
intensity, in a defocusing colloidal medium is analysed. The equations governing nonlinear light
propagation in a colloidal medium consist of a nonlinear Schrödinger equation for the beam and an
algebraic equation for themedium response. In the limit of low light intensity, these equations reduce to a
perturbed higher order nonlinear Schrödinger equation. Solutions for the leading and trailing edges of the
colloidal dispersive shock wave are found using modulation theory. This is done for both the perturbed
nonlinear Schrödinger equation and the full colloid equations for arbitrary light intensity. These results
are compared with numerical solutions of the colloid equations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Generic nonlinear wave equations, such as the Korteweg–de
Vries (KdV), nonlinear Schrödinger (NLS) and Sine-Gordon equa-
tions, all possess hump-like travelling wave solutions, solitary
waves [1], also referred to as solitons. However, the terms soli-
ton and solitary wave are not strictly interchangeable, as a soli-
ton is a solitary wave that has special properties. A solitary wave
is a hump-like wave which decays to a constant level away from
its peak [1]. To be termed a soliton a solitary wave must interact
cleanly with other solitary waves, with the only evidence of their
interaction being a possible phase change [1–3]. Another generic
nonlinear wave structure is the undular bore, also called a disper-
sive shock wave (DSW) or collisionless shock wave [4]. The study
of bores first arose in water wave theory [5,6]. Bores are the dis-
persive or dissipative resolution of an initial discontinuity in wave
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height, classic examples being the tidal boreswhich arise in coastal
regions of strong tidal flow, such as the Severn Estuary in England
and the Bay of Fundy in Canada, and the tsunamis generated byma-
rine earthquakes and land slips. Bores in fluids fall into two broad
categories, viscous bores and undular bores. As the name suggests,
viscous bores are dominated by viscous loss and are steady wave-
trains resulting from a balance between viscous loss, nonlinearity
and dispersion [1,5,6]. Such bores with loss will not be of concern
in the present work on optical DSWs. On the other hand, DSWs or
undular bores arise when viscous effects are negligible and are un-
steady wavetrains which spread continuously, with solitary waves
at one edge and linear waves at the other. In the context of fluid
flow, undular bores have been observed, studied and modelled in
the atmosphere [7–9], on the continental shelf in the internal tide
[10], in stratified fluids [11], in magma flow in geophysics [12–14],
in Fermi gases [15] and Bose–Einstein condensates [16]. Of rel-
evance to the present work, there have been experimental and
theoretical studies of DSWs in nonlinear opticalmedia such as pho-
torefractive crystals [17–19], nonlinear optical fibres [20–22] and
nonlinear thermal opticalmedia [23,24].While the termsDSWand
undular bore refer to the same phenomenon and, in principle, are
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interchangeable, the first term will be used in the present work.
This is because the term undular bore tends to be restricted to wa-
ter wave theory and the term DSW is more commonly used for the
phenomenon in other fields.

DSWs are unsteady wave forms and so finding solutions for
them is not as straightforward as finding solutions for steady
waves, such as solitary waves. It was not until the development
of Whithammodulation theory [1,25,26] that a technique was de-
veloped which enabled the derivation of DSW solutions of suit-
able nonlinear wave equations. Whitham modulation theory is a
method to analyse slowing varying periodic wavetrains using ei-
ther a Lagrangian formulation of the equations or conservation
equations [1], and is related to the method of multiple scales in
asymptotic analysis. For this reason it is sometimes referred to as
the method of averaged Lagrangians. It is also a nonlinear exten-
sion of the WKB method. The modulation equations derived using
Whitham modulation theory are equations for the slowly varying
parameters of the wavetrain, such as amplitude, wavenumber and
mean height. If the underlying wavetrain is stable, then the mod-
ulation equations form a hyperbolic system and if it is unstable,
themodulation equations form an elliptic system [1]. In particular,
Whitham derived the modulation equations for the KdV equation,
which were found to form a hyperbolic system [1,26]. It was sub-
sequently realised that a simple wave (expansion fan) solution of
thesemodulation equationswas physically aDSWsolution [27,28].
With this connection with Whitham modulation theory, DSW so-
lutions could be derived for other nonlinear wave equations, such
as the NLS equation [29], the Sine-Gordon equation [30] and the
Gardner equation [31]. However, finding these DSW solutions as
simple wave solutions relied on setting the hyperbolic modula-
tion equations in Riemann invariant form, which is only guaran-
teed if the underlying nonlinear wave equation is integrable [32].
Recently, El [4,33,34] showed that, in general, hyperbolic modula-
tion equations have a simplified structure at the leading and trail-
ing edges of a DSW. This simplified structure was then exploited to
determine its leading and trailing edges without a full knowledge
of the Whithammodulation equations for the governing equation.
For negative dispersion, the leading edge consists of solitary waves
and the trailing edge linearwaves, with the position of thesewaves
swapped around for positive dispersion. This relaxation of the need
for the full modulation equations then enabled the leading and
trailing edges of DSWs governed by non-integrable equations to
be determined [4,11,14,35,36]. In many observational measure-
ments only the solitary wave edge of an DSW can be resolved
[7–10,23,37], so the restriction of El’s method to the leading and
trailing edges of a DSW is less critical than may first appear.

In the present work the propagation of an optical DSW in
the nonlinear optical medium of a colloidal suspension will be
studied. The equations governing optical beam propagation in a
colloid consist of an NLS-type equation for the beam coupled to
an algebraic equation for the concentration of the colloid particles
which depends on the beam intensity [38,39]. In the limit of low
light intensity, these equations can be asymptotically reduced to a
higher order NLS equation. While a colloid is normally a focusing
medium, so that its refractive index increases with beam intensity,
it can be made to be a defocusing medium [40,41], which then
supports a DSW consisting of dark solitary waves at the trailing
edge and linear waves at the leading edge [4,29,42]. The DSW is
generated by a jump initial condition in optical beam intensity.
While there have been previous studies of DSW in colloids
[43,44], these have been for focusing colloids. In this case the
waves of the DSW are modulationally unstable, so that the DSW
structure has only a finite propagation length before becoming
unstable. This is not the case for a defocusing colloidal medium.
The leading and trailing edges of the colloid DSW are determined
using El’smethod [4,33,34] based on both the full colloid equations

and their limit in terms of a higher order NLS equation in the
limit of low beam intensity. Thesemodulation theory solutions are
compared with full numerical solutions of the governing colloid
equations. As well as determining the accuracy of modulation
theory, these comparisons also determine the applicability of the
low light intensity limit of the colloid equations.

2. Colloid equations

Let us consider the propagation of a polarised optical beam
through a colloidal suspension. DSWs in nonlinear optical media
are governed by NLS-type equations and, in the simplest approx-
imation, are governed by (1 + 1) dimensional equations [4,45].
Higher dimensional (2 + 1) dimensional DSWs governed by NLS-
type equations are much more difficult to analyse and need a non-
trivial azimuthal vortex structure to be stable. Indeed, solutions of
(2 + 1) dimensional DSWs governed by not just NLS-type equa-
tions, but any nonlinear wave equation, are an open topic [46,47].
Hence, the optical beam generating the colloid DSW will be as-
sumed to have a plane front. The z directionwill then be taken to be
the propagation direction, with the x direction orthogonal to this
and the beam having no y dependence. The concentration of the
colloid particles has a nonlinear dependence on the beam inten-
sity. The colloid can be either a focusingmedium, so that its refrac-
tive index increases with beam intensity [38,48], or defocusing, so
that it decreases with intensity [40,41]. In order for a stable DSW
to be generated, the colloidal medium will be assumed to be defo-
cusing. Let us denote the concentration of the colloidal particles by
η, with η0 the constant background concentration in the absence
of the optical beam. In the slowly varying, paraxial approximation
the non-dimensional equations governing the propagation of the
optical beam through the colloidal suspension are then [38,39]
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∂u
∂z

+
1
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∂2u
∂x2

− (η − η0)u = 0, (1)

with the equation of state, that is the medium response equation,

|u|2 = g(η) − g0, g(η) =
3 − η

(1 − η)3
+ ln η. (2)

Here u is the complex valued envelope of the electric field
of the optical beam and g0 = g(η0). The Carnahan–Starling
compressibility approximation has been used for the state relation
g . Alternative models for the compressibility alter the form of g .
The Carnahan–Starling approximation is valid up to the solid–fluid
transition, which occurs at η =

√
2π/9 ≈ 0.496 in a hard-sphere

fluid [49]. It should be noted that the nonlinear term in the NLS
equation (1) for the optical beam has a negative coefficient, so that
the equation is defocusing, in contrast to the focusing equation of
previous work [38,39].

Hoefer [50] considered general properties of DSW solutions of
generalised NLS equations of the form
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∂z

+
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∂2u
∂x2

− f (|u|2)u = 0, (3)

with details determined for a power law nonlinearity f . While
the colloid system (1) and (2) is in principle of this form, the
nonlinearity f cannot be explicitly determined from the medium
response equation (2). The colloid system then represents a further
extension of the forms of nonlinear response in generalised NLS
equations and the DSW solutions for such equations, in addition to
the previously studied extension of a nonlocal response [35,51].

The simplest initial conditionwhichwill result in the generation
of a DSW is a step initial condition in optical intensity,

u(x, 0) =


u−, x < 0,
u+, x > 0. (4)
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