
Author's Accepted Manuscript

Sulfonation of the Resolving Cysteine in Human Peroxiredoxin 1: A Comprehensive Analysis by Mass Spectrometry

Changgong Wu, Huacheng Dai, Lin Yan, Chuanlong Cui, Tong Liu, Tong Chen, Hong Li

PII: S0891-5849(17)30545-2

DOI: http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.341

Reference: FRB13316

To appear in: Free Radical Biology and Medicine

Received date: 21 October 2016 Revised date: 10 April 2017 Accepted date: 20 April 2017

Cite this article as: Changgong Wu, Huacheng Dai, Lin Yan, Chuanlong Cui Tong Liu, Tong Chen and Hong Li, Sulfonation of the Resolving Cysteine it Human Peroxiredoxin 1: A Comprehensive Analysis by Mass Spectrometry. Free Radical Biology and Medicine http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.341

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Sulfonation of the Resolving Cysteine in Human Peroxiredoxin 1: A Comprehensive Analysis by Mass Spectrometry

Changgong Wu¹, Huacheng Dai¹, Lin Yan, Chuanlong cui, Tong Liu, Tong Chen and Hong Li^{*}
Center for Advanced Proteomics Research and the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School Cancer Institute,
Newark, NJ 07103

*Correspondence to: Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University – NJMS-CINJ, 205 S. Orange Ave. F1226, Newark, NJ 07103. Tel.: +973 972 8396; fax: +973 972 1865. liho2@rutgers.edu

Abstract

Peroxiredoxin 1 (Prx1) is an essential peroxidase that reduces cellular peroxides. It holds 2 indispensable cysteines for its activity: a peroxidatic cysteine (C_P) for peroxide reduction and a resolving cysteine (C_R) for C_P regeneration. C_P can be readily sulfonated to C_P –SO₃H by protracted oxidative stress, which inactivates Prx1 as a peroxidase. By comparison, sulfonation of C_R to C_R –SO₃H in mammalian cells has only been reported once. The rare report of C_R sulfonation prompts the following questions: "can C_R –SO₃H be detected more readily with the current high sensitivity mass spectrometers (MS)?" and "do C_P and C_R have distinct propensities to sulfonation?" Answers to these questions could shed light on how differential sulfonation of C_P and C_R regulates Prx1 functions in cells. We used a sensitive Orbitrap MS to analyze both basal and H_2O_2 -induced sulfonation of C_R and C_P in either recombinant human Prx1 (rPrx1) or

-

¹ Equal contribution.

Download English Version:

https://daneshyari.com/en/article/5502080

Download Persian Version:

https://daneshyari.com/article/5502080

<u>Daneshyari.com</u>