Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

On the use of the experimentally determined enzyme inhibition constant as a measure of absolute binding affinity

Fouad H. Darras, Yuan-Ping Pang^{*}

Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN 55905, USA

ARTICLE INFO

Article history: Received 19 May 2017 Accepted 29 May 2017 Available online 29 May 2017

Keywords: Dissociation constant Inhibition constant Affinity Nonspecific binding Nontarget site binding Adsorption

ABSTRACT

Defined as a state function representing an inhibitor's absolute affinity for its target enzyme, the experimentally determined enzyme inhibition constant (K_i) is widely used to rank order binding affinities of different inhibitors for a common enzyme or different enzymes for a common inhibitor and to benchmark computational approaches to predicting binding affinity. Herein, we report that adsorption of bis(7)-tacrine to the glass container surface increased its K_i against *Electrophorus electricus* acetylcholinesterase (eeAChE) to 3.2 ± 0.1 nM (n = 5) compared to 2.9 ± 0.4 pM (n = 5) that was determined using plastic containers with other assay conditions kept the same. We also report that, due to binding or "adsorption" of bis(7)-tacrine to the inactive eeAChE, the bis(7)-tacrine K_i increased from 2.9 \pm 0.4 pM (n = 5) to 734 ± 70 pM (n = 5) as the specific *ee*AChE activity decreased from 342 U/mg to 26 U/mg while other assay conditions were kept the same. These results caution against using Kis to rank order binding potencies, define selectivity, or benchmark computational methods without knowing detailed assay conditions.

© 2017 The Authors, Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Enzyme inhibition constant (K_i), also known as inhibitor dissociation constant, is an equilibrium constant of a reversible inhibitor for complexation with its target enzyme. Unless otherwise specified all inhibitors described hereafter are reversible inhibitors. K_i is associated with thermodynamic parameters in that $\Delta G = RT \ln(K_i)$, where ΔG , R, and T are the absolute binding free energy, the gas constant, and the absolute temperature, respectively [1]. Here K_i should not be confused with K_I of an irreversible inhibitor, which is the irreversible inhibitor concentration that causes a rate of inactivation equal to a half of the inhibitor's pseudo-unimolecular inhibition rate constant. Nor should K_i be confused with k_i of an irreversible inhibitor that is the inhibitor's bimolecular inhibition rate constant [2–5]. Unlike the inhibitor concentration that causes

E-mail address: pang@mayo.edu (Y.-P. Pang).

50% enzyme inhibition (IC_{50}), K_i is a state function that is independent of the concentration of enzyme used to determine the K_i . Therefore, *K*_i represents the absolute affinity of an inhibitor for its target enzyme, and one can theoretically use K_i to rank order binding affinities of different inhibitors for a common enzyme, define selectivity of an inhibitor for different enzymes, and benchmark in silico approaches to prediction of inhibitor binding affinities.

However, a cursory literature search showed a wide range of experimentally determined Kis for 9-amino-1,2,3,4tetrahydroacridinium monohydrochloride (tacrine, a withdrawn Alzheimer's drug [6]) against acetylcholinesterase (AChE) [7–13] from the same species using the same spectrophotometric Ellman assay [14] under the same assay conditions (temperature, pH, and ionic strength). For example, the K_i of tacrine was reported to be 20.2 ± 0.1 nM by one group and yet 340 ± 97 nM by another group for inhibiting Electrophorus electricus AChE (eeAChE) under the same Ellman assay conditions [15,16]. For another example, the K_i of tacrine was reported to be 36 ± 1 nM by one group and later 137 nM by the same group for inhibiting recombinant human AChE under the same Ellman assay conditions [17,18]. These results raised concerns on the use of the experimentally determined K_i as a measure of absolute binding affinity.

In this article we report our enzyme kinetics studies using a

http://dx.doi.org/10.1016/j.bbrc.2017.05.168

0006-291X/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abbreviations: K_i, enzyme inhibition constant; AChE, acetylcholinesterase; eeAChE, Electrophorus electricus AChE; ATCh, acetylthiocholine chloride; bis(7)tacrine, 1,7-N-heptylene-bis-9,9'-amino-1,2,3,4-tetrahydro-acridinium dihydrochloride; DTNB, 5,5'-dithiobis(2-nitrobenzoic acid); SEA, specific enzyme activity; tacrine, 9-amino-1,2,3,4-tetrahydroacridinium monohydrochloride.

Corresponding author. Stabile 12-26, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

model system of *ee*AChE and its water-soluble inhibitors tacrine and 1,7-*N*-heptylene-bis-9,9'-amino-1,2,3,4-tetrahydro-acridinium dihydrochloride, an analog of tacrine known as bis(7)-tacrine [19], to evaluate the suitability of using the experimentally determined K_i as a measure of absolute binding affinity. The advantages of this model system are that AChE is a well-studied one-substrate enzyme and that preparation of the inhibitor solution for tacrine and bis(7)-tacrine does not require use of any co-solvent such as dimethyl sulfoxide, a mild oxidation reagent [20] that has an inhibitory effect on AChE [21].

2. Materials and methods

2.1. Materials

*ee*AChE was purchased from Sigma-Aldrich (St. Louis, MO; catalog number of C2888 with lot numbers of SLBN0954V and SLBS4398 and specific enzyme activity of \geq 1000 U/mg; catalog number of 3389 with lot number of SLBL3186V and specific enzyme activity of 200–1000 U/mg). Acetylthiocholine chloride (ATCh), NaH₂PO₄, Na₂HPO₄, and Triton X-100 were purchased from ACROS (Morris Plains, NJ). 5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB) and tacrine were ordered from Sigma-Aldrich (St. Louis, MO). Bis(7)-tacrine was synthesized according to a published scheme [19]. Inhibitor purity was confirmed by elemental analysis performed at NuMega (San Diego, CA). Tacrine: Anal. Calcd. for C₁₃H₁₇ClN₂O: C, 61.78; H, 6.78; N, 11.08. Found: C, 61.57; H, 7.20; N, 11.17. Bis(7)-tacrine: Anal. Calcd. for C₃₂H₄₄Cl₂N₄O₂: C, 65.41; H, 7.55; N, 9.53. Found: C, 65.81; H, 7.63; N, 9.34.

2.2. Specific enzyme activity and K_i determination

Briefly, to each of 40 wells in a flat-bottom, clear, 96-well plate was added at 26 °C sequentially 270 µL 50 mM sodium phosphate buffer (pH 8.0) with 0.1% (v/v) Triton X-100, 5 μ L eeAChE solution (15.000, 7.5000, 5.000, 2.500, or 0.625 µg/mL), 5 µL of inhibitor solutions (for tacrine: 3.0μ M, 1.5μ M, and 0.6μ M for 0.625μ g/mL of eeAChE or 6.0 μ M, 3.0 μ M, and 1.5 μ M for 15.000 μ g/mL of eeAChE; for bis(7)-tacrine: 0.6 nM, 0.3 nM, and 0.15 nM for 0.625 μg/mL of eeAChE or 90 nM, 60 nM, and 30 nM for 15.000 µg/mL of eeAChE) or 5μ L of distilled water (for control and the specific enzyme activity determination), 10 µL 2.5 mM DTNB, and 10 µL ATCh solutions (15.000, 7.500, 3.750, 1.875, and 0.938 mM). The resulting solutions were left on the bench at 26 °C for equilibration for 2 min and then measured for the ATCh hydrolysis rate (v) at a microplate reader temperature of 26 \pm 2 °C. The specific enzyme activity (SEA) for *ee*AChE was calculated according to SEA = $(A \times V)/(\varepsilon \times L \times T \times W_E)$, where A was the UV absorption in optical density (OD) of the ATCh hydrolysis product [(0.21–1.26) \times 10⁻³ OD]; *V* was the volume of the assay solution (300 μ L); ϵ was molar absorptivity at 405 nm (13.3 L cm⁻¹ mol⁻¹) [22]; *L* was the length of the light path of the flat-bottom, clear, 96-well plate (0.75 cm); T was the time over which the hydrolysis product was generated (10 min); $W_{\rm E}$ was the weight of eeAChE (10.4-250 pg); 1U is defined as converting 1 μ mol of substrate to its product in a minute [23]. K_i was obtained from 1/v, 1/[ATCh], and [inhibitor] using the data listed in Table S1 and Prism 4 with the Lineweaver-Burk plot [24] (see Supplementary information for details).

2.3. UV absorptions of inhibitor solutions that were prepared using glass or plastic vials

Briefly, to a single quartz cuvette that was washed with distilled water and dried by blowing N₂ gas, 3.0 mL of a tacrine or bis(7)-tacrine solution of 30.0 μ M, 20.0 μ M, 15.0 μ M, 10.0 μ M, 7.5 μ M, or

5.0 μ M was added using a 1000- μ L Pipetman P1000 pipette. The cuvette with the highest tacrine or bis(7)-tacrine concentration was first placed in a SpectraMax Plus 384 Absorbance Microplate Reader to scan for λ_{max} within 190–400 nm. The λ_{max} s for tacrine and bis(7)-tacrine were found to be 242 nm and 244 nm, respectively. The UV absorption of an inhibitor solution, which was prepared using two 2.0-mL microcentrifuge tubes or a 7.4-mL glass vial, was then determined by the observed absorbance of an inhibitor solution with or without 0.4% (v/v) Polysorbate 20 subtracted by the observed absorbance of distilled water with or without Polysorbate 20, respectively. The UV absorbance data are listed in Table S2. The UV absorbance of an inhibitor at each concentration shown in Fig. 1 was an average of at least three measurements each of which used a freshly prepared inhibitor solution (see Supplementary information for details).

3. Results and discussion

3.1. Container surface as nontarget binding site

To evaluate the suitability of using the experimentally determined K_i as a measure of absolute binding affinity, we first turned our attention to a seemingly trivial detail-the arbitrary use of either glass or plastic containers for stock solutions of AChE inhibitors in our enzyme inhibition studies. Adsorption of peptides or proteins to container surfaces and its effect on enzyme inactivation had been documented [3,25,26]. Additives leaching from laboratory plasticware had also been reported [27]. However, we did not find a report on adsorption of small-molecule inhibitors to container surfaces and its effect on K_i . This led us to determine whether there was a difference in K_i for two inhibitor stock solutions that were prepared using a 7.4-mL general-purpose borosilicate glass threaded vial (the glass vial) and a widely-used 2.0mL microcentrifuge tube (the plastic vial). Unexpectedly, we found the mean and standard error of K_i for bis(7)-tacrine against *ee*AChE to be 3.2 ± 0.1 nM (n = 5) or 2.9 ± 0.4 pM (n = 5) when the inhibition constant was determined using the glass or the plastic vials, respectively, while all other assay conditions were kept the same (Table 1). We also observed that the specific eeAChE activity resulting from short-exposure to the plastic vial (342 \pm 10 U/mg; Table 1) was similar to the activity from the glass vial $(334 \pm 11 \text{ U/mg}; \text{ Table 1})$. Rather than effects of possible additives leaching from the plastic vial, the 1000-fold difference in K_i indicated that substantially more adsorption of bis(7)-tacrine to the glass than plastic surface occurred during the inhibitor solution preparation process. This adsorption was confirmed by the differential UV absorptions of two bis(7)-tacrine solutions that were prepared using the glass and plastic vials (Fig. 1). It was further confirmed by the reduction of the difference in UV absorption that was caused by adding 0.4% (v/v) Polysorbate 20, a nonionic surfactant that was routinely used to prevent analytes from adsorption to the microfluidic system in our Biacore-based surface plasmon resonance studies (Fig. 1). It is worth noting that complete desorption of bis(7)-tacrine is impossible because >0.4% (v/ v) Polysorbate 20 reduces the water solubility of bis(7)-tacrine. Repeating the adsorption experiments using tacrine showed no differences in K_i and UV adsorption (Table 1 and Fig. 1). These results demonstrate that container surface can serve as a nontarget binding site for a test inhibitor during the inhibitor solution preparation process. The results also explain that the 1000-fold change for the K_i of bis(7)-tacrine against *ee*AChE was due to the adsorption-caused reduction of the actual inhibitor concentration that was available to eeAChE relative to the nominal inhibitor concentration.

Download English Version:

https://daneshyari.com/en/article/5505075

Download Persian Version:

https://daneshyari.com/article/5505075

Daneshyari.com