
Information and Software Technology 75 (2016) 148–170

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Specification of behavioral anti-patterns for the verification of

block-structured Collaborative Business Processes

J. Roa

a , ∗, O. Chiotti b , P. Villarreal a

a UTN-FRSF-CONICET, Lavaisse 610, Santa Fe, Argentina
b INGAR - CONICET, Avellaneda 3657, Santa Fe, Argentina

a r t i c l e i n f o

Article history:

Received 3 July 2015

Revised 11 December 2015

Accepted 3 January 2016

Available online 19 April 2016

Keywords:

Anti-patterns

Collaborative Business Processes

Verification

Formal methods

Control flow

Behavior

Cross-organizational collaborations

a b s t r a c t

Context: The verification of the control flow of a Collaborative Business Process (CBP) is important

when developing cross-organizational systems, since the control flow defines the behavior of the cross-

organizational collaboration. Behavioral anti-patterns have been proposed to improve the performance of

formal verification methods. However, a systematic approach for the discovery and specification of be-

havioral anti-patterns of CBPs has not been proposed so far.

Objective: The aim of this work is an approach to systematically discover and specify the behavioral anti-

patterns of block-structured CBP models.

Method: The approach proposes using the metamodel of a CBP language to discover all possible combi-

nations of constructs leading to a problem in the behavior of block-structured CBPs. Each combination is

called minimal CBP. The set of all minimal CBPs with behavioral problems defines the unsoundness pro-

file of a CBP language, from which is possible specifying the behavioral anti-patterns of such language.

Results: The approach for specification of behavioral anti-patterns was applied to the UP-ColBPIP lan-

guage. Twelve behavioral anti-patterns were defined, including support to complex control flow such as

advanced synchronization, cancellation and exception management, and multiple instances. Anti-patterns

were evaluated on a repository of block-structured CBP models and compared with a formal verification

method. Results show that the verification based on anti-patterns is as accurate as the formal method,

but it clearly improves the performance of the latter.

Conclusion: By using the proposed approach, it is possible to systematically specify behavioral anti-

patterns for block-structured CBP languages. During the discovery of anti-patterns different formalisms

can be used. With this approach, the specification of anti-patterns provides the exact combination of

elements that can cause a problem, making error correction and result interpretation easier. Although

the proposed approach was defined for the context of CBPs, it could be applied to the context of intra-

organizational processes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Business processes are strategic assets of organizations used to

deliver value-added products and services to clients. In order to

adapt to the market dynamics, organizations have been encour-

aged to integrate their business processes by establishing cross-

organizational collaborations with their partners, customers, and

providers [1] . A cross-organizational collaboration involves under-

taking collaborative and cooperative actions for a period of time

∗ Corresponding author.

E-mail addresses: jorgemarceloroa@gmail.com , jroa@frsf.utn.edu.ar (J. Roa),

chiotti@santafe-conicet.gov.ar (O. Chiotti), pvillarr@frsf.utn.edu.ar (P. Villarreal).

to achieve common goals, coordinate activities, share information,

and define and execute Collaborative Business Processes [2–4] .

A Collaborative Business Process (CBP) defines, from a global

perspective, the choreography of interactions that take place be-

tween organizations involved in a cross-organizational collabora-

tion, as well as the way the cross-organizational process-aware

information systems (PAISs) will interact [5,6] . Examples of lan-

guages for modeling CBPs are BPMN [7] , WS-CDL [8] , UMM [9] , or

UP-ColBPIP [5,6] .

The control flow of CBPs defines the behavior of cross-

organizational collaborations, therefore its verification is an impor-

tant aspect for cross-organizational PAISs development. Two im-

portant requirements of methods for business process verification

http://dx.doi.org/10.1016/j.infsof.2016.01.001

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.01.001&domain=pdf
mailto:jorgemarceloroa@gmail.com
mailto:jroa@frsf.utn.edu.ar
mailto:chiotti@santafe-conicet.gov.ar
mailto:pvillarr@frsf.utn.edu.ar
http://dx.doi.org/10.1016/j.infsof.2016.01.001

J. Roa et al. / Information and Software Technology 75 (2016) 148–170 149

are: completeness and performance. Completeness means a method

should support verification of every business process model, which

implies supporting all language constructs. Performance , refers

to the time a method requires to carry out the verification

[10,11] . These two requirements are also valid for CBP verification

methods.

Supporting a complete set of constructs may affect the verifica-

tion performance, and viceversa. Therefore, there is a trade-off be-

tween these requirements. Current methods that support the veri-

fication of complex constructs [12–15] analyze the state space of

models, which could lead to the state space explosion problem

[16] , affecting verification performance; and methods that can ver-

ify processes in linear time [11] do not support complex control

flow constructs.

This trade-off can be solved by using anti-patterns [17–19] . A

behavioral anti-pattern of CBPs is a predefined and well-known sit-

uation of a deficient specification of the control flow of CBPs. Once

anti-patterns have been specified, CBP verification relies on a pat-

tern matching technique, instead of exploring the state space of

models.

Existing behavioral anti-patterns (either for the context of intra-

organizational processes [18,20,21] or for CBPs [21]) were speci-

fied from well-known problems described in the literature, or from

repositories of real case processes. Two main disadvantages of pro-

cess repositories are: (1) insufficient models; and (2) bias by com-

mon problems of business process designers. Therefore, some anti-

patterns could not be identified from the repositories, and hence,

a verification method based on identified anti-patterns could not

satisfy the completeness requirement.

To cope with this issue, in this work we propose an approach to

systematically discover an specify behavioral anti-patterns of CBP

languages. It consists in discovering all possible combinations of

block-structured constructs composed of the least possible num-

ber of elements where such combination leads to a behavioral er-

ror, so that if one of these combinations of constructs is part of

a CBP, then the CBP will have a behavioral error. Once discovered

and specified, anti-patterns can be used to detect behavioral errors

such as deadlocks, livelocks, and lacks of synchronizations in the

control flow of block structured CBP models. In order to validate

and evaluate the approach, we specified behavioral anti-patterns

of UP-ColBPIP [6] , which is a block-structured language for CBP

modeling. Although the proposed approach was defined for the

context of CBPs, it could also be applied to the context of intra-

organizational processes.

This work is structured as follows. Section 2 reviews general

concepts and existing work about modeling, structure, and verifica-

tion of CBPs. Section 3 introduces the concepts of block-structured

CBPs and minimal CBPs. Section 4 presents the approach to spec-

ify behavioral anti-patterns. Section 5 shows the specification of

anti-patterns for UP-ColBPIP. Section 6 presents the evaluation of

the proposed approach. Section 7 discusses related work. Finally,

Section 8 presents conclusions and future work.

2. Background

2.1. Modeling of CBPs

Currently, there are different languages for modeling and im-

plementing CBPs such as BPMN [7] , BPEL [22] , UP-ColBPIP [6] , WS-

CDL [8] , among others. These languages have a structural and a

behavioral semantics. In the structural semantics , each element of

the concrete syntax of a language usually represents a construct.

Constructs are defined at the language meta-model level, whereas

their instances are defined at the model level. A construct may

have infinite instances, and such instances can be used to gener-

ate a possibly infinite set of models from a given metamodel. The

constructs of a given language are defined by a non-empty set of

classes (or types) of the language’s metamodel, and the relations

between constructs’ instances in a model are determined and re-

stricted by the metamodel. Since a CBP model is always composed

of instances of constructs, in this work we use the term CBP ele-

ment (or just element) to refer to an instance of a construct that is

part of a given CBP model.

The behavioral semantics of a CBP language is defined at a meta-

model level as part of the behavioral semantics of each control

flow construct and determines how a process model or specifica-

tion will be executed, i.e. the execution ordering of their elements,

which is also referred to as the control flow perspective of process

models. The use of control flow constructs is essential to define the

behavior of CBPs, since they determine the behavioral semantics of

the elements of a CBP model.

The focus of this work is the behavioral semantics. To model

behavior, CBP languages usually provide simple control flow con-

structs such as sequence, split and join to represent concurrency,

and decision and merge to represent mutual exclusion; and com-

plex control flow constructs such as advanced synchronizations,

cancellation and exception handling, multiple instances, etc.

2.2. Structure of business process models

The combination of business process elements determines the

structure of business process models. The metamodel of the lan-

guage plays an important role in this subject. Two types of busi-

ness process languages can be distinguished: graph-structured and

block-structured [23]. A graph-structured language (such as BPMN

[7]) enables the definition of business process models by combin-

ing its elements in any way, as long as the combination is sup-

ported by the language’s metamodel. These models are essentially

graphs. On the contrary, a block-structured language (such as UP-

ColBPIP [6]) has constraints defined in its metamodel to provide

block-structured constructs. A block starts with a construct that

represents the divergence of parallel or alternative paths and ends

with a construct that represents the convergence of such paths.

This implies that models are block-structured and can be repre-

sented as trees [20,24] , where each element of a model (except

the root) must be nested within another one. Details about block-

structured CBP models are presented in Section 3

Despite its unstructured nature, usually graph-structured lan-

guages can generate instances of both graph-structured and block-

structured models, whereas block-structured languages only gener-

ate instances of block-structured models. For example, Fig. 1 shows

a block-structured CBP model defined with BPMN (Fig. 1 a) and

UP-ColBPIP (Fig. 1 b). After the start event, the BPMN choreogra-

phy model contains two Parallel gateways that define a block. One

(annotated with the text “Parallel split”) represents the divergence

of the paths, whereas the other one (annotated with “Parallel

join”) represents their synchronization. In the UP-ColBPIP model,

the construct And is a block that represents both the split and the

join. The first parallel gateway of the BPMN model is composed of

two diverging paths. One contains a Loop Activity annotated with

“While”, whereas the other one contains two Exclusive gateways

(annotated with “Decision” and “Merge”) that define a block. This

block is followed by a Loop Activity . In the UP-ColBPIP model this is

represented with the constructs Loop-While, Xor , and Loop-Until re-

spectively. Within the exclusive gateways of the BPMN model there

are two other parallel gateways defining a block with two inter-

action activities, one for each parallel path. In UP-ColBPIP this is

represented with the construct And within the Xor . UP-ColBPIP is

described in more detail in Section 5.1 .

Download English Version:

https://daneshyari.com/en/article/550880

Download Persian Version:

https://daneshyari.com/article/550880

Daneshyari.com

https://daneshyari.com/en/article/550880
https://daneshyari.com/article/550880
https://daneshyari.com

