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a b s t r a c t

Recovering gene regulatory networks and exploring the network rewiring between two different disease
states are important for revealing the mechanisms behind disease progression. The advent of high-
throughput experimental techniques has enabled the possibility of inferring gene regulatory networks
and differential networks using computational methods. However, most of existing differential network
analysis methods are designed for single-platform data analysis and assume that differences between
networks are driven by individual edges. Therefore, they cannot take into account the common informa-
tion shared across different data platforms and may fail in identifying driver genes that lead to the change
of network. In this study, we develop a node-based multi-view differential network analysis model to
simultaneously estimate multiple gene regulatory networks and their differences from multi-platform
gene expression data. Our model can leverage the strength across multiple data platforms to improve
the accuracy of network inference and differential network estimation. Simulation studies demonstrate
that our model can obtain more accurate estimations of gene regulatory networks and differential net-
works than other existing state-of-the-art models. We apply our model on TCGA ovarian cancer samples
to identify network rewiring associated with drug resistance. We observe from our experiments that the
hub nodes of our identified differential networks include known drug resistance-related genes and poten-
tial targets that are useful to improve the treatment of drug resistant tumors.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Biological processes often involve the interactions of genetic
components such as mRNAs and proteins. Characterizing the regu-
latory interactions between genes is critical for elucidating the
structural and functional architecture within cells [1–3]. Moreover,
there is strong evidence that gene regulatory networks (GRN)
undergo changes in response to different conditions such as cancer
progression and drug resistance [4–6]. Therefore, inferring gene
regulatory networks and exploring how theses networks change
across different conditions are fundamental for understanding
the biological mechanisms behind disease development [7].

With the accumulation of gene expression data, an increasing
number of computational methods have been proposed for gene
regulatory network estimation [8,9]. Gaussian graphical models
(GGMs), which can identify conditional dependence (or direct
dependence) relationships between genes, have been widely used
for network inference [10]. Based on the assumption that the

observed gene expression data are generated from a multivariate
normal distribution, the gene regulatory network can be deter-
mined directly from the precision matrix (or inverse covariance
matrix) of GGMs [11]. That is, two genes interact with each other
if and only if the corresponding entry of the precision matrix is
nonzero. Therefore, based on GGMs, the problem of gene regula-
tory network estimation can be turned into a problem of precision
matrix estimation. However, traditional GGMs typically infer one
network for a specific condition, and do not consider the network
rewiring between different conditions.

In recent years, several differential network analysis methods
have been developed for identifying altered dependencies between
genes across different conditions [12–14]. Based on GGMs, the dif-
ference between two group-specific networks can be identified by
calculating the difference between the two corresponding preci-
sion matrices [13]. Thus, most existing differential network analy-
sis methods first estimate each group-specific network separately,
and then calculate their difference [15]. However, estimating the
group-specific networks separately may lose the global dependen-
cies that preserve across all conditions. To exploit the similarity
between the true group-specific networks, several methods have
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been proposed to jointly estimate multiple graphical models that
share certain characteristics [13,16]. Most of these methods
assume that the differences between networks are driven by indi-
vidual edges. This is unrealistic in many real-world applications
since the difference between gene regulatory networks might be
driven by certain genes whose patterns of connectivity to other
genes are disrupted across conditions. To provide a more intuitive
interpretation of the network differences, Mohan et al. introduced
a node-based learning approach to jointly estimate multiple
GGMs [14].

Rapidly evolving technologies make it possible to collect gene
expression data for same patients from different experimental
platforms [17]. As gene expression data collected from different
platforms (multi-platform gene expression data) describe the
expression levels of genes for same patients from different views,
they may share some consistent information. Therefore, integrat-
ing multi-platform gene expression data may improve the accu-
racy of gene regulatory network estimation and differential
network analysis [18,13]. However, previous differential network
analysis methods focus on analyzing the gene expression data col-
lected from a single platform, which could not effectively leverage
the common information provided by multi-platform gene expres-
sion data.

To address the above problems, we propose a novel node-based
multi-view learning algorithm called co-perturbed node joint
graphical lasso (CPJGL) model, to simultaneously infer multiple
gene regulatory networks corresponding to different patient
groups and the differential networks between these patient groups
based on gene expression data collected from multiple data plat-
forms (Fig. 1). Our model is an extension of the node-based learn-
ing approach proposed by Mohan et al. [14] to the case where gene
expression data are characterized in terms of two aspect: patient
groups and platform types. Instead of assuming that individual
edges are shared or differed across disease states, we assume that
the differences between networks are driven by certain perturbed
regulatory genes. Based on the row-column overlap norm regular-
izer [14] and the group lasso penalty [19], our model can exploit
the characteristics shared by gene expression data collected from
different types of platforms. We propose an alternating direction
method of multiplier (ADMM) algorithm to solve the optimization

problem. In simulation studies, our proposed CPJGL demonstrated
better performance than other competing methods in network
inference and differential network analysis. To illustrate the effec-
tiveness of CPJGL on real biological data, we apply CPJGL on TCGA
ovarian cancer samples to identify network rewiring associated
with platinum resistance. We identify three key regulator genes,
namely TSC1, IRS1 and PDPK1, from mTOR signaling pathway
and two perturbed genes (MYC and BMP7) from TGF-b signaling
pathway. By literature search, we find that these five genes play
important roles in drug resistance.

2. Methods

2.1. Gaussian graphical models

Gaussian graphical models can encode the conditional depen-
dencies among a set of p genes, where the expression levels
(denoted by a p-dimensional random vector X ¼ ðX1; . . . ;XpÞT) of
these p genes are assumed to follow a multivariate Gaussian distri-
bution Nðl;RÞ (here l 2 Rp and R is a positive definite p� p
matrix). Then two genes are conditionally independent if and only
if the corresponding entry of the inverse covariance matrix (preci-
sion matrix)H ¼ R�1 is zero [11], i.e., genes i and j are independent
of each other given all of the other genes if and only if Hij ¼ 0.
These conditional dependence relationships can be described by
a graph in which nodes denote genes and edges connect condition-
ally dependent pairs of genes. To estimate the conditional depen-
dencies among p genes, it suffices to estimate the sparsity
pattern of the corresponding precision matrix H. Suppose that
we have n observations that are independently drawn from a mul-
tivariate Gaussian distribution Nðl;RÞ. When n > p, we can esti-
mate the precision matrix H ¼ R�1 by maximum likelihood.
However, when p > n, this approach fails since the empirical
covariance matrix is singular and cannot be inverted to yield an
estimate of R�1. To deal with this problem, a number of studies
[20–22] have instead taken a penalized log-likelihood:

max
H

n
2

logdet Hð Þ � tr SHð Þð Þ � kkHk1; ð1Þ

Fig. 1. Motivation and overview of our model. The input data are gene expression data for two different patient groups collected from K data platforms. CPJGL jointly
estimates the corresponding 2K gene regulatory networks and the K differential networks between these two patient groups by drawing support from the K data platforms.
CPJGL encourages the inferred networks and differential networks to share common network structures. It also imposes hub structures on the resulting differential networks.
The red node denotes the driver gene that perturbs the network structure.
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