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Article history: Stimulated Raman scattering (SRS) microscopy is a vibrational imaging platform developed to visualize
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imaging of metabolic activities of small molecules in living cells.
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high-sensitivity, and three-dimensional sectioning capability, SRS microscopy has been used to study
chemical distribution, molecular transport, and metabolic conversion in living cells in a label-free man-
ner. Moreover, aided with bio-orthogonal small-volume Raman probes, SRS microscopy allows direct
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1. Introduction

A central theme of chemical science is deciphering how mole-
cules function in a complex system, such as a living cell. Such study
contributes to the society by providing fundamental knowledge in
medical science to improve our lives. Yet, our understanding of
chemistry in living system (e.g., how intensive biosynthetic chem-
ical activity drives cell development, function, and inter-cellular
communications) is still limited, partly because conventional bio-
chemical assays treat the cell, a highly dynamic structure, as a sta-
tic bag of molecules. In current paradigms, molecules are extracted
from a tissue and analyzed by various analytical techniques such as
immunoblotting and liquid chromatography/mass spectrometry.
These in vitro assays provide very little information about the spa-
tial distribution or temporal dynamics of molecules in real life,
thus they are unable to tell the exact roles of molecular activities
on cellular functions [1]. Furthermore, the molecular profile of a
cell may alter during the extensive sample processing procedures.
For in situ imaging, fluorescent microscopy is widely used. By mea-
suring fluorescent signals from endogenous species, such as coen-
zymes nicotinamide adenine dinucleotide (NADH) and Flavin
adenine dinucleotide (FAD), cell metabolism can be measured in
real time [2-4]. Unfortunately, not all endogenous molecules pos-
sess the ideal optical properties. Fluorescent labels allow imaging
of proteins and some key metabolites in living cells, but they often
disturb the function of small biomolecules, such as glucose and
cholesterol, limiting the ability to monitor their activities. These
limitations stress the critical need of establishing new platforms
for learning chemistry in situ in living systems.

Raman-scattering based vibrational spectroscopy has been a
powerful tool for non-invasive, label-free analysis of chemicals.
Raman scattering is an inelastic scattering process, in which an
excitation photon loses energy to a certain molecular vibration
mode, resulting a scattered photon with a different wavelength.
Such energy losses are directly related to vibrational transitions
of a molecule, showing as peaks in Raman spectrum (Fig. 1a).
Therefore, analysis of Raman-scattered photons can be used to
identify chemical species quantitatively. Raman microscope, which
is now commercially available, allows chemical imaging with sub-
micron spatial resolution [1]. However, because Raman scattering
is a feeble process, the image acquisition speed of current Raman
microscopes (at least tens of minutes per frame) is insufficient to
follow chemical dynamics in vivo. To improve the imaging speed,
line illumination has been adopted for ultra-fast Raman imaging,
allowing several minutes per frame imaging speed (Nanophoton,
Osaka, Japan). To overcome the speed limitation, coherent Raman
scattering (CRS) microscopy [5] has been developed to enhance
the Raman signal level. In CRS microscopy, two excitation beams,
known as pump () and Stokes (ws), are used. When the laser-
beating frequency (wp, — ;) is in resonance with a molecular
vibration frequency (), four major CRS processes occur simulta-
neously, known as coherent anti-Stokes Raman scattering (CARS),
coherent Stokes Raman scattering, stimulated Raman gain (SRG),
and stimulated Raman loss (SRL) (Fig. 1b). These nonlinear optical
processes offer a large signal that allows live-cell imaging at a
speed three to four orders of magnitude faster than Raman micro-
scope. As nonlinear optical process, CARS and SRS microscopy
offers inherent three-dimensional (3D) sectioning capability. Fur-
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Fig. 1. Spontaneous and coherent Raman scattering processes. (a) Energy diagram of spontaneous Raman scattering and representative spectra. (b) Energy diagram of SRS
and CARS processes and representative spectra. Broadband coherent Raman scattering induced by a pump field at w, and a Stokes field at ws. Solid arrows indicates laser
excitation and dashed arrow indicates the spontaneous scattering process Q.;, denotes the vibrational energy.
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