
Information and Software Technology 70 (2016) 176–180

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Introduction to the special section—General Theories of Software

Engineering: New advances and implications for research

Klaas-Jan Stol a,∗, Michael Goedicke b, Ivar Jacobson c

a Lero—the Irish Software Research Centre, University of Limerick, Ireland
b University of Duisburg-Essen, Essen, Germany
c Ivar Jacobson International, Verbier, Switzerland

a r t i c l e i n f o

Article history:

Received 17 July 2015

Revised 31 July 2015

Accepted 31 July 2015

Available online 17 August 2015

Keywords:

General Theory of Software Engineering

Special section

Editorial

a b s t r a c t

In recent years, software engineering researchers have recognized the importance of the role of theory or

SE research, resulting in the emergence of the General Theories of Software Engineering (GTSE) community.

This editorial introduces a special section that contains four articles, and reflects on the advances made by

the contributing authors.

We discuss the different approaches taken in each of the four papers and outline a number of avenues for

future research.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade or so, the software engineering research com-

munity has increasingly started to pay attention to the topic of the-

ory in software engineering [1–5]. In addition to several workshops

on the theme of General Theories of Software Engineering (GTSE), a

first special issue was published in the journal Science of Computer

Programming [6]. Given the momentum of the emerging community

around this theme, we published a call for papers, and this special

section is the result.

Many other disciplines have general theories—for example,

physics has the Standard Model of particle physics [7]. General

theories are useful for several reasons, and one important reason in

particular is that it helps to identify important questions and as such

helps to set out a research agenda for a discipline as a whole. A recent

example of this is a long-time missing component of the Standard

Model in physics. The Standard Model suggested the existence of a

specific type of particle (a boson). By 2013, physicists announced that

they believed they had found the Higgs boson. Thus, the Standard

Model provided an overall framework that suggested to researchers

what to look for.

In software engineering, such an overall framework is missing.

The SEMAT (Software Engineering Methods and Theory) initiative,

founded in 2009 by Ivar Jacobson, Bertrand Meyer and Richard

Soley, has argued that software engineering needs to identify a

∗ Corresponding author.

E-mail address: klaas-jan.stol@lero.ie (K.-J. Stol).

common ground. To that end, the SEMAT initiative has defined the

‘Essence’ language and kernel [4] which has been accepted as an

OMG standard [8].

Most studies in software engineering pay little or no attention

to theory development, and very few studies are based on exist-

ing theories, although exceptions do exist [9]. The explanation for

this may lie in the tradition of how software engineering studies

have been conducted thus far. Software engineering studies can be

roughly organized into two categories. The first category is what

we call solution-seeking studies. These studies observe a certain

technical problem and ‘engineer’ a solution that addresses the

problem. Wieringa would call these ‘practical problems’ [10]. In

most cases such engineering studies also contain an experimental,

quantitative evaluation to demonstrate how well the formulated

solution addresses the problem.

The second category is what we call knowledge-seeking studies.

These are studies that investigate software engineering practice by

studying, for example, what software professionals do, what their

challenges are, and what processes they use, addressing questions

such as “how are things done” and “what’s going on here.” Wieringa

would call these ‘knowledge problems’ [10]. This type of study has be-

come more common over the last decade, and researchers conducting

this type of study have adopted a variety of research methods from

other disciplines most notably from the social sciences, such as case

studies, surveys, grounded theory and ethnography. The use of quali-

tative data is quite common in knowledge-seeking studies

Solution-seeking studies tend to focus on very specific and de-

tailed software engineering problems. Often, solutions are composed

to analyze or change a system’s source code. In such studies, the

http://dx.doi.org/10.1016/j.infsof.2015.07.010

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.07.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.07.010&domain=pdf
mailto:klaas-jan.stol@lero.ie
http://dx.doi.org/10.1016/j.infsof.2015.07.010


K.-J. Stol et al. / Information and Software Technology 70 (2016) 176–180 177

‘theory’ tends to be in the form of a hypothesis that the proposed

solution works better than existing solutions. Exemplar constructs

in such studies are program size (which can be measured as lines of

code or object code size) and performance. We call such ‘theories’

(the sets of hypotheses put forth around a specific tool or technique)

micro-theories. While these studies offer direct value in that they

provide a solution to a software engineering problem, it is often

not immediately clear how they contribute to the larger issues in

software engineering.

Knowledge-seeking studies, on the other hand, can be conducted

at many different levels of detail. Some studies are case studies to in-

vestigate a new phenomenon. A classic example of this is the study by

Mockus et al. investigating open source software development [11].

Based on the results of that study, the authors proposed a set of hy-

potheses that they suggest could explain how open source software

development works ‘in general,’ and form the basis for a middle-range

theory. Such middle-range theories are very useful as they facilitate

the integration and linking of several studies with one another and

construct a body of knowledge on software engineering phenomena.

Despite an active community that publishes hundreds of research

papers every year, many researchers in our field agree that our re-

search is not making a significant impact on industry. Perhaps we are

not asking the right questions. Software engineering researchers are

studying a wide variety of topics, and the boundaries of software en-

gineering as a discipline are still expanding. Partly this is due to the

fact that new trends are continuously emerging that are relevant for

software practitioners—for example, the use of social media in soft-

ware engineering practice [12]. However, the ‘big picture’ of software

engineering research remains unclear—a General Theory of Software

Engineering is missing. A GTSE is needed to position all those micro

and middle-range theories.

The goal of this special section, as well as the workshop series on

this theme organized by other members of the GTSE community, is to

draw attention to this issue, to explore community members’ ideas,

and to encourage others to think about how their research could

benefit from a theory-oriented approach to software engineering re-

search. The scope of this special section was not limited to general

theories. Instead, we welcomed middle-range theories, evaluations of

theories, and proposals for how to use theories from other disciplines

to explain software engineering phenomena.

2. The articles in this special section

Following the call for papers on the theme of General Theories of

Software Engineering, we received 11 submissions. Of those, one was

desk-rejected as it did not fall within the scope of the original call.

The remaining ten articles were each reviewed by two reviewers as

well as by the guest editors. Of these ten, four articles were accepted

for publication.

In their article “The Tarpit – A General Theory of Software En-

gineering,” Pontus Johnson and Mathias Ekstedt propose a general

theory of software engineering. Johnson and Ekstedt developed this

theory (the ‘Tarpit’) based on their argument that communication

breakdowns are at the heart of the challenges in software engineer-

ing. The Tarpit is based on four theoretical fields that are of central

importance to software engineering: languages and automata, cog-

nitive architecture, problem solving, and organizational structure.

These four different fields also reflect the socio-technical nature of

the software engineering field. To illustrate the utility of the Tarpit

as a theory, Johnson and Ekstedt demonstrate how it can be used to

explain and predict three well-known phenomena in software engi-

neering: Brooks’s Law (a principle), domain-specific languages (an

artifact), and continuous integration (a practice). The Tarpit theory

can be seen as a common framework that offers explanations and

allows predictions for a variety of phenomena. One current limitation

of the Tarpit theory, as acknowledged by Johnson and Ekstedt is that

its presentation is qualitative and not formalized. We believe that

the Tarpit theory can be further explored in a number of ways. As the

authors suggest, further work may focus on formalization, such as

the definition of an explicit set of propositions. Another venue is the

use of the Tarpit theory as a framework for integrating an existing

body of literature in a particular area, for example, coordination

in global software development. By doing so, the Tarpit can be

used as ‘theoretical glue’ to integrate an existing body of empirical

research.

The second article, “A Theory of Distances in Software Develop-

ment” by Elizabeth Bjarnason, Kari Smolander, Emelie Engström and

Per Runeson also presents a theory. In contrast with the Tarpit the-

ory by Johnson and Ekstedt which is based on existing theoretical

constructs, the Theory of Distances was inductively developed and

grounded in empirical data. The Theory of Distances is based on an

empirically-based model, which the authors named the “Gap model,”

that consists of three parts. The first part of the Gap Model is the def-

inition of eight different types of distances. These include the well-

known geographical and temporal distances, but new types of dis-

tances are psychological and cognitive distances which affect an in-

dividual’s perceptions, communication skills and competence levels.

The second part is the definition of eight so-called alignment practices

which help to link requirement engineering on the one hand and test-

ing on the other hand. One such alignment practice is cross-role col-

laboration, which involves roles from different disciplines in software

engineering activities; for example, testers who participate in the re-

viewing of requirements documents. The third part of the Gap Model

provides the link between the former two parts and explains how

alignment practices help to reduce the various types of distances. Ef-

fectively, this third part in which Bjarnason and colleagues outline

how the various alignment practices affect distances is a set of im-

plicit propositions. The Gap Model is based on empirical findings, and

offers practical insights that can be of immediate use to software pro-

fessionals. At the same time, we also believe that the Gap Model in-

vites further studies that empirically test the various implicit proposi-

tions. To do so, these propositions should be instantiated as hypothe-

ses through the operationalization of the various constructs, i.e., the

various types of distances and alignment practices. For example, ge-

ographical distance is not sufficiently operationalized as longitudinal

geographical distance will be affected differently than latitudinal dis-

tance. In the former, time zone differences will play a role, whereas

in the latter no time differences are present.

The third article, “What does it mean to use method? Towards

a Practice Theory for Software Engineering” by Yvonne Dittrich

presents a conceptual foundation for understanding software devel-

opment as a social practice. In particular, Dittrich aims to develop

an understanding of why the use of software development methods

varies by project. The issue addressed here is that each organization,

project, or team adopts methods (or practices) in their own specific

way that fits within a specific context. Earlier researchers named

this ‘method-in-action’ [13]. Following an in-depth philosophical

argumentation that draws from several insights from other disci-

plines, Dittrich outlines a number of very important implications

for research, practice and education. Dittrich argues that methods

emerge in one of two ways: either as abstracted practice patterns

to communicate to colleagues, or as output of software engineer-

ing research. The impact of the latter is very small. In both cases,

empirical research is concerned with evaluating those methods and

techniques, but also with understanding the context in which these

methods and techniques are used. As each software development

endeavor takes place in a unique context with specific challenges

and constraints, the methods used may or may not work as expected.

Furthermore, Dittrich also argues that the tailoring and adoption of

methods needs to be carefully deliberated and that the suitability

of methods should be evaluated after adoption so as to ensure that

their intended goals are achieved.



Download English Version:

https://daneshyari.com/en/article/551649

Download Persian Version:

https://daneshyari.com/article/551649

Daneshyari.com

https://daneshyari.com/en/article/551649
https://daneshyari.com/article/551649
https://daneshyari.com

