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a b s t r a c t

Quantum probability theory has been successfully applied outside of physics to account for numerous
findings from psychology regarding human judgement and decision making behavior. However, the
researchers who have made these applications do not rely on the hypothesis that the brain is some type
of quantum computer. This raises the question of how could the brain implement quantum algorithms
other than quantum physical operations. This article outlines one way that a neural based system could
perform the computations required by applications of quantum probability to human behavior.
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Although quantum mechanics is a theory of physics, the math-
ematics underlying this theory provides the foundation for a gen-
eral theory of probability (Pitowski, 2006; Suppes, 1966). Most
applications of probability theory outside of physics are based on
classical theory Kolmogorov (1933/1950). Until recently, quantum
probability theory has rarely been applied outside of physics to

fields such as the behavioral and social sciences. However, a body of
researchers in the new field called “quantum cognition” have made
a reasonably convincing case that quantum probability theory
provides a viable newway to formulate theoretical explanations for
puzzling behavior that have resisted explanation by classical
probability theories (Busemeyer and Bruza, 2012; Khrennikov,
2010). See Ashtiani and Azgomi (2015) for a recent survey of the
field.

There are two different views that a quantum cognition
researcher can hold regarding the use of quantum probability
theory to model human behavior. One view is that quantum
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probability rules are simply useful for predicting human behavior,
and they do not have to be represented at a neurophysiological
level (see, e.g., Atmanspacher and Filk, 2010). The other view is that
the brain actually implements these procedures. In particular, the
state vector is somehow physically present in the brain.

Researchers who take the view that brain actually implements
quantum computations have at least two different ideas about how
this can be done. One hypothesis (e.g., Hammeroff, 1998; Jibu and
Yasue, 1995)1 proposes that the brain is using quantum physical
mechanisms to represent cognitive states and produce operations.
Another hypothesis (e.g., Eliasmith, 2013) proposes that classical
neural network models can implement the computations required
by the quantum probability rules. The purpose of this article is to
describe a classical neural network that implements quantum
computations.

1. Confidence judgments during signal detection

To motivate this presentation, it is helpful to begin with an
empirical example that illustrates the kind of evidence used to
support the application of quantum probability to human judg-
ment and decision making. One of the key types of findings used to
support a quantum interpretation are interference effects, which
are essentially violations of the law of total probability.

We recently found evidence for interference effects obtained
from a human decision making experiment using a signal detection
type task in which a decision maker must decide on each decision
trial whether a target is present or absent based on noisy and un-
certain information (e.g., to decide whether or not an enemy is
located at a position based on a poor and fuzzy image). Decisions
are made across several hundred trialse on some trials the signal is
present, and on other trials, no signal is present. Accuracy, decision
time, and confidence are measured on each trial. Performance on
the signal detection task has traditionally been modeled using
classical Markov type of randomwalk/diffusion models of decision-
making (see, e.g., Ratcliff and Smith, 2004). The basic idea is that the
decision maker accumulates evidence for each hypothesis until the
accumulated evidence reaches a threshold. The first hypothesis to
reach the threshold is chosen, the time to reach the threshold de-
termines the decision time, and the difference in evidence soon
after the decision determines the confidence (Pleskac and
Busemeyer, 2010).

Alternatively, Busemeyer et al. (2006) developed a quantum
walkmodel for signal detection (summarized later), which assumes
that a person's evidence state is represented by a quantum wave
function that evolves across levels of confidence in the direction
driven by the presented information. Busemeyer and Bruza (2012)
derived a key prediction that provides a critical method to empir-
ically distinguish and test the two theories. The experiment con-
sists of two conditions: In the choice-confidence condition, the
person makes a choice (makes a binary decision between signal
present versus signal absent) at time t1 and then rates confidence at
time t2; in the confidence-alone condition, the person only pro-
vides a confidence rating at time t2. For both conditions, the focus is
on themarginal distribution of confidence ratings that are obtained
at time t2. Confidence is defined as the judged probability that a
signal is present rated on a 0% (certain signal not present) to 100%
(certain signal is present) scale. The Markov model obeys the
Chapman-Kolmogorov equation, which is a dynamic form of the
law of total probability, and it predicts no difference between the
two conditions. The quantum model predicts an interference effect

produced by the choice on the confidence rating, which makes the
confidence distributions differ between the two conditions.

Kvam et al. (2015) empirically tested for the predicted inter-
ference effects by comparing confidence ratings produced by the
choice-confidence versus confidence-alone conditions. They ob-
tained strong support for the interference effect predicted by the
quantum model. Confidence judgments were, on average, lower in
the choice-confidence condition (M ¼ 83:96; SD ¼ 15:56) than in
the confidence-alone condition (M ¼ 85:15; SD ¼ 14:95), and a
Bayesian statistical analysis of the difference resulted in a 95%
highest density interval that did not cover zero.2 Fig. 1 shows the
result for one of the nine participants. The horizontal axis repre-
sents the degree of confidence, and the vertical axis represents the
relative frequency of reporting a particular level of confidence.
Notice the large bump produced by the choice in choice-confidence
condition, which is absent for the choice-alone condition. Also
notice that the confidence seems to oscillate as it moves up the
scale in agreement with the quantum model and contrary to the
predictions of the Markov model.

2. Quantum probability basics

Quantum theory was originally developed by a brilliant collec-
tion of scientists including Planck, Einstein, de Broglie, Bohr, Hei-
senberg, Born, Schr€odinger and many others, but a firm
mathematical foundation was not established until the axiomatic
works by Dirac and von Neumann (Von Neumann, 1932/1955;
Dirac, 1930/1958). Of course, the theory has evolved extensively
since that time to include new concepts, such as quantum noise
decoherence produced by open systems (Nielsen and Chuang,
2000). However, here we simply describe the very basic ideas. To
keep the mathematics at an elementary level, we will restrict our
discussion to finite spaces. Although the dimension of the space is
finite, it could be very large, e.g., 10 billion, which is less than the
number of neurons in the brain! We can translate classical into
quantum probability theory as follows.

We start by replacing the classic sample space (a finite set of
cardinality N) with a quantum Hilbert space (a finite vector space of

Fig. 1. Interference effects for one participant. Top panel shows choice-confidence
condition, bottom panel shows confidence-alone condition. Horizontal axis repre-
sents confidence on a 0 ¼ certain absent to 100 ¼ certain present scale. Vertical axis
shows relative frequency of a confidence rating. Blue curve shows data, black curve
shows quantum predictions, grey curve shows Markov predictions.

1 The quantum field models of memory by Freeman and Vitiello (2006) seem to
lie someplace between an abstract mathematical model and a physical brain model. 2 This is the Bayesian version of 95% confidence interval.
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