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a  b  s  t  r  a  c  t

In this  paper,  we  show how  to extend  our previously  proposed  novel  continuous  time  Recurrent  Neural
Networks  (RNN)  approach  that  retains  the advantage  of  continuous  dynamics  offered  by  Ordinary  Dif-
ferential  Equations  (ODE)  while  enabling  parameter  estimation  through  adaptation,  to larger  signalling
networks  using  a modular  approach.  Specifically,  the signalling  network  is decomposed  into  several
sub-models  based  on  important  temporal  events  in the network.  Each  sub-model  is  represented  by  the
proposed  RNN  and  trained  using  data  generated  from  the  corresponding  ODE  model.  Trained  sub-models
are  assembled  into  a whole  system  RNN  which  is  then  subjected  to systems  dynamics  and  sensitivity  anal-
yses.  The  concept  is illustrated  by  application  to G1/S transition  in  cell  cycle  using  Iwamoto  et  al.  (2008)
ODE  model.  We  decomposed  the  G1/S  network  into  3  sub-models:  (i) E2F transcription  factor  release;  (ii)
E2F and CycE  positive  feedback  loop  for elevating  cyclin  levels;  and  (iii)  E2F and  CycA  negative  feedback
to  degrade  E2F.  The  trained  sub-models  accurately  represented  system  dynamics  and  parameters  were
in good  agreement  with  the ODE  model.  The  whole  system  RNN  however  revealed  couple  of  parameters
contributing  to  compounding  errors  due  to feedback  and required  refinement  to sub-model  2.  These
related  to  the  reversible  reaction  between  CycE/CDK2  and  p27, its inhibitor.  The  revised whole  system
RNN  model  very  accurately  matched  dynamics  of the  ODE  system.  Local  sensitivity  analysis  of  the  whole
system  model  further  revealed  the  most  dominant  influence  of  the  above  two  parameters  in  perturbing
G1/S  transition,  giving  support  to  a  recent  hypothesis  that  the  release  of inhibitor  p27  from  Cyc/CDK
complex  triggers  cell  cycle  stage  transition.  To  make  the  model  useful  in  a  practical  setting,  we modified
each  RNN  sub-model  with  a time  relay  switch  to  facilitate  larger  interval  input  data  (≈ 20  min)  (original
model  used  data for  30 s or  less)  and  retrained  them  that produced  parameters  and  protein  concentra-
tions  similar  to  the  original  RNN  system.  Results  thus  demonstrated  the  reliability  of  the  proposed  RNN
method  for  modelling  relatively  large networks  by modularisation  for practical  settings.  Advantages  of
the  method  are  its  ability  to represent  accurate  continuous  system  dynamics  and  ease  of:  parameter
estimation  through  training  with  data  from  a practical  setting,  model  analysis  (40%  faster  than  ODE),
fine  tuning  parameters  when  more  data  are  available,  sub-model  extension  when  new  elements  and/or
interactions  come  to light  and  model  expansion  with  addition  of sub-models.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The field of systems biology is concerned with understanding
the principles of organisation and functionality of living systems
for the purpose of advancing our knowledge of biology, health and
diseases and developing effective cures. Biological systems can be
characterised as hierarchically organised, interconnected and com-
plex web of entities interacting in space and time for performing
myriad functions to sustain life. A current emphasis in systems
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biology is the study of regulatory pathways- network of genes,
proteins and other molecules linked by biochemical reactions. A
key focus is to understand phenomena including homeostasis and
instability that emerge from the way  that constituent elements
interact. The system, not the building blocks, is the subject mat-
ter. A bottleneck for analysing systems behaviour of regulatory
pathways (networks) is that typically they are extensively cross-
linked networks of multiple sub-pathways that are highly regulated
through feedback loops. This leads to pathways without an easily
discernible boundary where overlapping sub-pathways continu-
ously share information in the temporal unfoldment of the process.
Any aspect, for example cell cycle system or stages of cell cycle, can
be considered as a functional subsystem embedded in a larger sys-
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tem of networks as an integral and interlinked part of the whole.
Full details of many such subsystems are yet to be characterised but
they are intricate and complex at subsystem or any level. As more
and more omics data and knowledge of pathways are gathered at a
fast pace, effective approaches to model and investigate signalling
networks as complex systems become paramount.

To address this challenge, computational and mathematical
approaches have been combined with biological knowledge to
gain insight into how living systems function (Aderem, 2005;
Ge et al., 2003; Heath and Kavraki, 2009; Hübner et al., 2011;
Hyman and Whither, 2011; Ideker et al., 2001; Kitano, 2002;
Kohl et al., 2010; Molina et al., 2010; Oltvai and Barabasi, 2002).
These approaches fall broadly into two types: continuous (such as
ODEs) and discrete (such as Boolean) models. Additionally, hybrid,
stochastic, Bayesian, network induction and soft systems methods
have been developed to improve various aspects of these mod-
els (Ling et al., 2013). An overview, advantages and disadvantages
of these approaches were presented in our previous work (Ling
et al., 2013). These models have been used in modelling (Ling et al.,
2013): gene regulatory networks (de Jong, 2002; Hecker et al., 2009;
Karlebach and Shamir, 2008; Polynikis et al., 2009; Qi et al., 2010),
pr otein signalling networks (Albert et al., 2009; Gilbert et al., 2006;
Hardy et al., 2011; Hughey et al., 2010; Sachs et al., 2002, 2005;
Woolf et al., 2005; Tenazinha and Vinga, 2011) and metabolic net-
works (Berthoumieux et al., 2011; Papin et al., 2003, 2004; Pozo
et al., 2010; Rizk and Liao, 2009). However, gaining insights into a
particular biological process may  require integration of several of
these network types; for example, cell cycle is a signalling network
involving integrated action of gene regulation and protein–protein
signalling to produce two identical cells.

The major problem with signalling networks is representing
a large number of interactions in a single model for analysing
their temporal dynamics accurately. Boolean approaches based on
logic based operations can provide a qualitative view of a large
system due its simplicity of approach. Hybrid and various exten-
sions of Boolean have been proposed for characterising continuous
dynamics of signalling networks but these still need refinement
for capturing complex behaviour (Ling et al., 2013; Singhania et al.,
2011). On the other hand, ODEs can provide a comprehensive quan-
titative view of temporal dynamic of the system in fine detail but
simulating a large network with ODEs is complex due to the large
number of ODEs with many unknown parameters (Ashyraliyev
et al., 2009; Lillacci and Khammash, 2010; Sun et al., 2008; Xie et al.,
2010). The task of modelling large signalling networks becomes
more manageable and efficient if the whole network can be divided
into meaningful modules that can be modeled individually and then
assembled to represent the whole system. At the same time, if an
efficient approach to parameter estimation is applied at the mod-
ular level, the parameter estimation of the whole system becomes
easier. In consideration of the strengths and limitations of the
above methods, seamlessly modularising a system and effectively
parameterising it while preserving the attractive attributes of ODE
representation can be valuable for large signalling networks.

In our previous work (Ling et al., 2013), we proposed a novel
recurrent neural networks (RNN) concept based on ODE descrip-
tion for representing and parameterising signalling networks. We
presented its methodological development and proof of concept
by demonstrating its efficiency in parameterisation and analysis of
temporal dynamics and robustness through a successful applica-
tion to a small 3-element system- p53-Mdm2 oscillatory system in
cell cycle. In particular, we demonstrated that the model and its out-
comes are biologically representative. In essence, we transformed
an ODE system into an RNN framework that enabled parameter
estimation and simplified subsequent model analysis.

In this article, we propose to extend this approach to a larger sys-
tem for representing it as a system of subsystems and demonstrate

its effectiveness for seamlessly modularising and parameterising
larger networks and gaining novel insights into the biological sys-
tem concerned. The idea here is that modularisation simplifies
the sub-model structure and therefore they train more quickly
as there are fewer parameters to optimise and smaller number
of equations to process within each sub-model. In typical mod-
ularisation, a task is divided into independent sub-tasks that are
coordinated by a higher level controller to achieve the task. How-
ever, for an interacting self-organising system without a priori
knowledge about how it can be decomposed, a clear division into
strongly autonomous modules is not possible and any subsystem
can overlap with other subsystems in time and space. Therefore,
many possibilities exist for modularising signalling networks and
our focus is not on proposing the best approach to modularisation
but to develop an efficient approach to represent a chosen modular-
isation. The rationale for modularisation used here to demonstrate
the extension of the RNN model is based on the key events at
various stages of the temporal progression of the system where
modules interact dynamically in these events. Benefits of the pro-
posed RNN approach is the ease of sub-model development and
parameterisation and integration of sub-models into one model to
produce accurate system dynamics more quickly than the ODE sys-
tem. Furthermore, amenability of parameters to adaptation allows
the scope for fine tuning them as more accurate data become avail-
able. Also, it could allow an opening for exploration of potential
evolution of long-term learning and memory of these networks
as there is increasing perception that somatic cells also learn as
neurons do in our brain (Levin, 2014).

The basic idea is that the whole system is divided into a num-
ber of modules that represent specific important events in the
chosen pathway and are represented by modular recurrent neural
networks. However, unlike standard recurrent networks, the net-
works developed in this study (and our previous study (Ling et al.,
2013)) are exact representations of the interactions in the biological
system of interest. Therefore, each of the weights in the modular
networks corresponds to a kinetic parameter in the correspond-
ing system of ODEs and the assembled system of recurrent neural
networks, simulated as a dynamical system, can provide vital bio-
logical insights into the behaviour of the actual biological system.
In essence, we seek to transform a larger ODE system into a mod-
ular RNN system that enables modular level parameter estimation
and simplifies the analysis of large signalling networks.

1.1. Recurrent neural network (RNN) for signalling networks

In our previous article (Ling et al., 2013), we highlighted that
with the rapid rate of generation of omics data that are becoming
more and more accurate and comprehensive, there is a high poten-
tial for Artificial Neural Networks (ANN) to contribute to systems
biology. In that paper, we also gave a detailed overview of ANN in
general and a type of recurrent networks (RNN) that shows much
potential for representing, parameterising and analysing system
dynamics of signalling networks as well as for modularising large
networks. We demonstrated its application to a small 3-protein
system. Here, we provide a very brief overview of ANN and the
RNN developed in our previous work (Ling et al., 2013) that is ade-
quate for the current purpose of highlighting how the method is
extended to a larger network.

Two  key attractions of ANNs are that they are mathematical
models that can simulate nonlinear systems to an arbitrary degree
of precision and they can solve a variety of complex problems
that cannot be solved analytically by most mathematical models
(Samarasinghe, 2006). This is achieved by a network of compu-
tational neurons (Fig. 1a) that collectively process information
(inputs, xi) to reach a desired output based on an iterative update
of model parameters (weights, wij) during network training with
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