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a b s t r a c t

Particle size of nanoparticles and the respective polydispersity are key factors influencing their biophar-
maceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip
many preliminary studies usually required to optimize formulations. The aim was to build a mathemat-
ical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceu-
tical polymer of choice. Polymer properties controlling the particle size were identified as molecular
weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact
angle and interfacial tension, respectively. A model was built using artificial neural network including
these properties as input with particle size and polydispersity index as output. The established model
successfully predicted particle size of nanoparticles covering a range of 70–400 nm prepared from other
polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and
testing data, respectively. Polymer surface activity was found to have the highest impact on the particle
size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted poly-
mer properties affecting particle size and confirmed the usefulness of artificial neural networks in pre-
dicting the particle size and polydispersity of polymeric nanoparticles.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nanoparticles (NPs) have proven their efficient use as drug
delivery carriers in a wide range of therapeutic applications [1,2].
This is based on unique properties allowing for the enhancement
of drug penetration across biological barriers [3,4] and drug target-
ing towards malignant [5,6] and inflamed tissues [7]. Approaches
such as passive targeting with modified surface properties by using
different surfactants or stealth NPs by polyethylene glycol decora-
tion involve significant changes to surface properties. Similarly,
active targeting can be accomplished by decorating the surface of
nanoparticles with targeting moieties and ligands [8]. Most of
these phenomena have been found to be size-dependent, for exam-
ple; enhanced oral drug absorption [9], selective targeting towards
tumors [10] or inflamed tissues [11]. Therefore, controlling the par-
ticle size of NPs and its distribution is of crucial importance. Size
distribution is usually defined by the polydispersity index (PDI),

which specifies the uniformity and stability of NPs and should be
within 0.01 to 0.5 [12]. Until now, when a certain particle size with
a narrow size distribution is aimed for, this has been done by
empirical approaches and trial and error. Accordingly, developing
a mathematical model that can predict the particle size and PDI
of polymeric NPs obtained from various types of polymers would
be very beneficial, as it will save time and money by preserving
polymers, chemicals and materials normally consumed during
the optimization phase.

The main statistical and modelling tools used for optimizing
and predicting characteristics of NPs are response surface method-
ology (RSM) [13,14] and artificial neural network (ANN) [15–18].
Both approaches were already compared to each other with the
results demonstrating the superiority of ANN to RSM in data fitting
and prediction capabilities [19–22]. This was attributed to the lim-
itation of RSM to quadratic functions only unlike ANN, which can
handle a broader range of functions and find relationships between
independent and dependent variables with no prior specific math-
ematical equation or function [19]. ANN learns by example, where
a data set is used for building the model termed training data and
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then the efficiency of established model is checked against new
data termed testing data.

Previous studies using ANN focused mainly on investigating the
process parameters affecting particle size and examined a limited
number of polymers without relating polymer properties to the
obtained particle size [16–18]. In these cases, the developed mod-
els were used to characterize and optimize the factors affecting the
NPs preparation process. However, thorough evaluation of the pre-
diction power of these models was not the primary focus in these
studies, as the test data were relatively small and confined to the
training range of the model.

Here, ANN was utilized to develop a mathematical model cap-
able of predicting the particle size and PDI of polymeric nanoparti-
cles manufactured from a larger choice of pharmaceutical
polymers with various properties. In order to achieve this goal,
polymer properties affecting particle size and PDI were precisely
identified, quantified and then used as an input for the model.
Afterwards, the model was tested comprehensively against data
located inside and outside the borders used to train it. Further-
more, the evaluation of the established model involved completely
new polymers, which were not included in the training data.

2. Materials and methods

2.1. Materials

Ethyl cellulose (EC) with an ethoxy content of 48–49.5% but dif-
ferent molecular weights (MWs) and consequently viscosity grades
(Ethocel� standard 4, 7, 10 and 45 premium) was a kind donation
from Colorcon (Dartford, England). Acid terminated poly(lactic
acid) (PLA) (Purasorb PDL 02 A) was a gift from Purac Biomaterials
(Gorinchem, The Netherlands). Poly(vinyl acetate) (PVAc) (Vinna-
pas B17 special) was kindly granted by Wacker Chemie AG (Bur-
ghausen, Germany). Ammonio Methacrylate Copolymer, Type B
(Eudragit� RS PO) was a kind sample from Evonik (Darmstadt, Ger-
many). Poly(vinyl alcohol) (PVA) (Poval� 40–88) was a gift from
Kuraray (Frankfurt, Germany). Acid terminated poly(DL-lactide-
co-glycolide) (PLGA) 50:50 of different MWs and viscosities (Reso-
mer� RG 502 H MW 7000–17,000, Resomer� RG 503 H MW
24,000–38,000 and Resomer� RG 504 H MW 38,000–54,000) and
ester terminated PLGA 50:50 (Resomer� RG 505 MW 54,000–
69,000) were purchased from Evonik (Darmstadt, Germany). Poly
(e-caprolactone) (PCL) (Mn 10,000 and Mn 45,000) were purchased
from Sigma-Aldrich (Steinheim, Germany). All other chemicals
were of analytical grade or equivalent purity (For further details
on the characteristics of EC and PLGA polymer types see supple-
mentary materials Tables 1 and 2).

2.2. Preparation of polymeric nanoparticles

Polymeric nanoparticles were prepared using the emulsification
solvent evaporation method [23] replacing dichloromethane with
ethyl acetate. Briefly, 100 mg of the respective polymer was
dissolved in ethyl acetate to form the organic phase, while the

aqueous phase was composed of PVA in different concentrations
(0.05–1.5%). The aqueous phase was added to the organic phase
and the mixture was ultrasonicated using a probe ultrasonicator
(Sonoplus HD 2200, Bandelin, Berlin, Germany) at an amplitude
of 50% for 3 min. Preliminary experiments revealed that varying
the emulsification energy input did not significantly affect neither
the particle size nor PDI (Data not shown). After emulsification, the
organic solvent was evaporated using a rotary evaporator (Rotava-
por RE 120, Büchi, Flawil Switzerland) under reduced pressure to
form the polymeric NPs. The volume of the aqueous phase was
kept constant at 10 ml while the volume of ethyl acetate, in which
the polymer was dissolved, was changed (2–9 ml) altering the sol-
vent to water ratio (S:W) to elucidate its effect on the particle size.

2.3. Particle size and PDI of polymeric nanoparticles

The particle size and PDI of the nanoparticles were determined
by dynamic light scattering technique (Nanopartica SZ-100, Hor-
iba, Kyoto, Japan) at a fixed angle of 90� at 25 �C using 1.5 ml poly-
methyl methacrylate cuvettes. The samples were diluted with
distilled water before measuring to avoid multiple scattering.

2.4. Determination of polymer solutions viscosity

Viscosity of polymer solutions in ethyl acetate was measured
using a rotation viscometer (Haake Rheostress 1, Thermo Fisher
Scientific, Karlsruhe, Germany). 100 mg of the respective polymer
was dissolved in 5.5 ml of ethyl acetate (1.81% w/v) and its viscos-
ity was measured at shear rate of 100 s�1 at 20 �C.

2.5. Determination of polymer contact angle

The static contact angle (hc) of different polymers was measured
by the drop shape analysis technique (DSA100, Krüss, Germany).
Firstly, polymer films were fabricated using the solvent casting
method [24]. The polymer was dissolved in ethyl acetate to simu-
late the NPs preparation procedure and then the solution was cast
on a glass slide and placed in a hood overnight at room tempera-
ture to evaporate the organic solvent. To ensure complete drying,
the glass slides were further dried under vacuum at 25 �C over-
night (VDL23, Binder, Germany). Secondly, the hc between the
obtained dried polymer films and water was determined using ses-
sile drop method at room temperature. A constant volume of water
(8 ll) was deposited on the surface of the polymer film and the
contact angle value was calculated from the recorded droplet
image using sessile drop fitting method.

2.6. Interfacial tension measurements

Interfacial tension (IFT) between water and either pure or poly-
mer-containing ethyl acetate was also determined using drop
shape analysis technique (DSA100, Krüss, Germany) applying
pendant drop method. A water drop was formed through a needle
of diameter 1.8 mm in the organic phase, which was placed in an
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