
Contents lists available at ScienceDirect

Mutat Res Fund Mol Mech Mutagen

journal homepage: www.elsevier.com/locate/mut

Investigating mutation-specific biological activities of small molecules using
quantitative structure-activity relationship for epidermal growth factor
receptor in cancer

P. Anoosha, R. Sakthivel, M. Michael Gromiha⁎

Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India

A R T I C L E I N F O

Keywords:
EGFR
Cancer
Driver mutation
Quantitative structure-activity relationship
(QSAR)
Regression
Docking

A B S T R A C T

Epidermal Growth Factor Receptor (EGFR) is a potential drug target in cancer therapy. Missense mutations play
major roles in influencing the protein function, leading to abnormal cell proliferation and tumorigenesis. A
number of EGFR inhibitor molecules targeting ATP binding domain were developed for the past two decades.
Unfortunately, they become inactive due to resistance caused by new mutations in patients, and previous studies
have also reported noticeable differences in inhibitor binding to distinct known driver mutants as well. Hence,
there is a high demand for identification of EGFR mutation-specific inhibitors. In our present study, we derived a
set of anti-cancer compounds with biological activities against eight typical EGFR known driver mutations and
developed quantitative structure-activity relationship (QSAR) models for each separately. The compounds are
grouped based on their functional scaffolds, which enhanced the correlation between compound features and
respective biological activities. The models for different mutants performed well with a correlation coefficient,
(r) in the range of 0.72–0.91 on jack-knife test. Further, we analyzed the selected features in different models and
observed that hydrogen bond and aromaticity-related features play important roles in predicting the biological
activity of a compound. This analysis is complimented with docking studies, which showed the binding patterns
and interactions of ligands with EGFR mutants that could influence their activities.

1. Introduction

The Epidermal Growth Factor Receptor (EGFR) is one of the well
known drug targets for cancer treatment. It is the second most genes
with high frequency of point mutations observed in different cancer
types [1]. Mutations result in abnormal activation of EGFR kinase and
are implicated in the development and progression of several cancer
types [2]. The activating mutations such as L858R and T790M have
impact on protein function leading to its over-expression which results
in increased cell growth, proliferation and metastases [3]. Although a
number of first- and second-generation small molecule tyrosine kinase
inhibitors were developed to treat mutated EGFR, they suffer from drug
resistance after long-term drug administration and dose-limiting ad-
verse effects, respectively [4–8]. Currently, research is mainly focused
on the development of third generation inhibitors which could display
high mutant selectivity while minimizing adverse effects by sparing
wild-type EGFR activity [9,10].

Earlier studies reported that distinct EGFR mutations differ mark-
edly in their inhibitor susceptibilities [11]. For example, the well
known EGFR inhibitor gefitinib showed 50-fold weaker binding affinity

towards G719S mutant and is significantly less sensitive compared to
L858R mutant [12]. This shows that intrinsic differences in inhibitor
binding of the altered kinases can explain the differential sensitivity of
cell lines bearing these mutations and another possibility might be
differences in their signaling pathways. These observations trigger the
importance of developing mutation specific inhibitors for efficient
treatment of tumors bearing distinct mutations. Several studies have
been reported in the literature to understand the differences in altered
drug sensitivities by investigating mutant structures with respect to
their binding patterns to small molecules by using computational [13]
and biochemical analyses [12,14,15]. Among them, 2D and 3D QSAR
models are key tools for predicting the biological activity of new in-
hibitor compounds [16]. In the past, QSAR models have been devel-
oped for EGFR using single scaffold based analogues such as anilino-
quinolines and quinazoline derivatives with experimental data
generated from a single bioassay system [17,18]. The predictive cov-
erage is minimal as the methods are based on a limited set of com-
pounds with a particular scaffold. Further, QSAR based analysis of
EGFR inhibitors with different functional scaffolds have been per-
formed against wild-type EGFR protein using a large set of molecules to
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identify or predict novel compounds [19,20]. Apart from these studies,
it is very important to analyze the structure – activity relationships of
the compounds against specific EGFR driver mutants which would be
beneficial in understanding their altered responses to drugs and also to
predict the activity of new compounds.

In the present study, we have collected biological activities (IC50) of
diverse set of compounds against eight typical EGFR mutants which are
known to be driver mutations [21] and are highly sensitive to tyrosine
kinase inhibitors. We developed individual QSAR models for each
mutant separately by different combinations of features and achieved a
correlation, (r) in the range of 0.78–0.92. We have examined the
models using n-fold cross validation and jack-knife test. Further, for
evaluating the performance of our models, we trained 90% of the
randomly chosen data using the same set of selected features and tested
the remaining 10% of the data and repeated this for five times by
shuffling the data. Interestingly, the performance of the model on dif-
ferent test sets is consistent in all iterations and the average correlation
coefficient (r) is> 0.90 in all the cases. We have also analyzed the
binding patterns of the compounds in our dataset with mutants using
docking studies and observed that hydrophobic interactions play major
role in binding, which is in strong agreement with the previous ana-
lyses. Further, we proposed few compounds (known anti-cancer drugs
but new to EGFR) with IC50 in nano-molar range against different EGFR
mutants, which could be a basis and promising step towards the de-
velopment of mutation specific inhibitors.

2. Materials and methods

2.1. Dataset

We have collected diverse sets of anti-cancer compounds with bio-
logical activity (IC50) against eight typical EGFR mutants viz. A289V,
G598V, G719S, T751I, P753S, S768I, R832C and double mutant
L858R/T790M, which are known to be driver mutations. The IC50 va-
lues of all the compounds vary widely in the range of 37 mM–0.2 nM
and are obtained under same experimental conditions from COSMIC
database [22], which is extremely suitable for the development of high
quality and reliable QSAR models. For example, distribution of IC50

values of compounds against L858R/T790M double mutant is re-
presented in Fig. 1. The activity values of 130 compounds range widely
from 0.002 μM–2750 μM. IC50 values of the compounds are converted
to pIC50 (Eq. (1)) for better interpretation and to avoid over fitting.

pIC50 = − log10 (IC50) (1)

2.2. Grouping of the compounds

Further, the compounds of each mutant are grouped into different
datasets based on their functional scaffolds [Table 1]. For the mutants
A289V, G719S, T751I, S768I, R832C and L858R/T790M, compounds
are grouped into three datasets with analogous functional groups (i)
Azole, Quinazoline, Indole, azine and Aniline; (ii) Imidazole,

Thiophene; (iii) Peptide, Carbohydrate, Alkaloids and Lactone; respec-
tively. Compounds of P753S mutant are grouped into two datasets in
which proteins, peptides, carbohydrate and lactones are grouped into
dataset2 and rest of the compounds in dataset1 and for G598V mutant,
compounds are divided into four datasets belonging to different func-
tional groups. To validate the performance of developed QSAR models,
10% of each dataset for all the mutants has been randomly chosen for
test set.

2.3. Molecular descriptors of chemical compounds

We derived a set of 590 features representing 1-D, 2-D and 3-D
molecular descriptors encoding chemical composition, topology and
geometry, respectively using PaDEL Descriptor server [23]. The total
number of features has been reduced to 154 by employing ‘di-
mensionality reduction by correlation’ criteria as discussed in previous
reports [24] to remove the redundancy with a correlation cut-off of
0.75 between any two features.

2.4. Multiple linear regression and feature selection

We have developed independent QSAR models for all the datasets of
eight mutants using multiple linear regression technique [25] by
combining more than one feature (Eq. (2)).

Y = β1.x1β1·x1 + β2.x2 + β3.x3 + …. + βn. xn + C (2)

Where, Y is dependent or response variable representing biological
activity of the compound (IC50) in this study and xi is independent
variable which represents each feature. The intercept C and slopes β1,
β2…βn are partial regression coefficients. Best set of features for each
dataset are identified by using step-wise least square fit [26] and re-
gression technique to develop QSAR regression models.

2.5. Model performance and validation

The performance of the developed QSAR regression models is
measured using absolute correlation-coefficient (r) between the ex-
perimental and predicted IC50 values. The statistical significance of the
models is evaluated using p-value and mean absolute error, MAE [27].
The developed models are validated using (i) n-fold cross validation:
entire dataset is divided into n equal subsets and single subset is used
for validation and n-1 subsets as training. This process is repeated for n
times such that each subset is used for testing at least once and (ii) jack-
knife (leave-one-out cross validation) test: regression model is devel-
oped using n-1 compounds (n: total number of compounds in dataset)
and tested on the remaining compound to predict its IC50 value and this
process is iterated n times to predict IC50 of each compound in the
dataset.

2.6. Contribution of each feature in the regression models

We assessed the significance of each feature in different mutant
regression models using proportional reduction of error (PRE) measureFig. 1. Distribution of experimental IC50 values of L858R/T790M double mutant.

Table 1
Dataset and classification of compounds based on functional groups for eight mutants.

Mutant Dataset1 Dataset2 Dataset3 Total compounds

P753S 60 26 86
A289V 67 28 37 132
G719S 37 29 26 92
T751I 28 28 35 91
S768I 40 26 26 92
R832C 66 28 37 131
L858R/T790M 66 27 37 130
G598V 39 28 28 37 132
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