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a b s t r a c t

Purpose: To develop a population based statistical model of the systematic interfraction geometric vari-
ations between the planning CT and first treatment week of lung cancer patients for inclusion as uncer-
tainty term in future probabilistic planning.
Materials and methods: Deformable image registrations between the planning CT and first week CBCTs of
235 lung cancer patients were used to generate deformation vector fields (DVFs) representing the geo-
metric variations of lung cancer patients. Using a second deformable registration step, the average DVF
per patient was mapped to an average patient CT. Subsequently, the dominant modes of systematic geo-
metric variations were extracted using Principal Component Analysis (PCA). For evaluation a leave-one-
out cross-validation was performed.
Results: The first three PCA components mainly described cranial–caudal, anterior–posterior, and left–
right variations, respectively. Fifty and 112 components were needed to describe correspondingly 75%
and 90% of the variance. An overall systematic variation of 3.6 mm SD was observed and could be
described with an accuracy of about 1.0 mm with the PCA model.
Conclusions: A PCA based model for systematic geometric variations in the thorax was developed, and its
accuracy determined. Such a model can serve as a basis for probability based treatment planning in lung
cancer patients.

� 2017 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 123 (2017) 99–105

During the course of radiotherapy, the anatomy of a patient can
change, representing a challenge for accurate patient irradiation.
For photon therapy, most of these geometric uncertainties can be
dealt with using margins [1,2] and adaption [3]. Several studies
have shown that a simple geometric expansion of the target vol-
ume is not sufficient for proton treatments [4,5], as the dose can
vary considerably when the anatomy in the beam path changes,
causing tumor underdosage and/or hotspots in the Organs-At-
Risk (OARs) [6–8]. Due to density heterogeneities [9] in the thorax,
this effect is even more relevant for lung cancer patients, making it
challenging to obtain robust proton treatment plans. Several meth-
ods have been proposed to replace the margin recipe for proton
therapy, ranging from beam specific margins [10] to robust opti-
mization [11–14]. These methods mainly take into account the
range and rigid setup uncertainties. To mitigate the dose effect
caused by respiration, the concept of Internal Gross Tumor Volume
(IGTV) [15] has been introduced. Prediction of the respiratory
motion has been studied using a statistical motion model

[16–19]. To create robust treatment plans, we need to take into
account other interfraction geometric variations during treatment
as well, such as baseline shifts, differential motion, posture change,
etc. However, this has not yet been extensively explored for the
thorax. As in the case of respiratory motion, a statistical
population-based model describing typical geometric variations
[20] can be used to describe these variations and include them in
robust treatment planning (e.g. generating multiple plausible
instances of the geometric changes and convert these changes into
probability distributions of range uncertainties to include in the
probabilistic plan optimization). Large geometric changes and
treatment response, such as resolution of atelectasis and tumor
shrinkage, are beyond the scope of this paper and should be
accounted for using adaptive plan modification.

This work describes the use of Principal Component Analysis
(PCA) [21] to create a statistical deformation model for random
and systematic variations in the thorax to be used in future prob-
abilistic treatment planning techniques.
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Method and materials

Patient data

For the generation of the model we used the planning CT (pCT)
and all available cone beam CTs (CBCTs) (1–5 scans) from the first
treatment week of lung cancer patients (Table 1) treated with rad-
ical radiotherapy or chemo-radiotherapy (excluding stereotactic
treatments). We selected patients with readily available data trea-
ted between 2010 and 2013. Patients treated prior to 2012 had a
mid-ventilation (MidV) pCT [22], while the other patients had a
mid-position (MidP) pCT [23] and motion compensated (MC)
CBCTs [24]. The average difference between MidV and MidP is
small (<0.5 mm in all directions) [23].

Due to the limitations of Deformable Image Registration (DIR)
we excluded 128 out of 387 patients with synchronous tumors in
both lungs or anatomical abnormality of lung tissues (pleural effu-
sion, atelectasis, post-obstructive lung tissue infiltration, post-
operative radiation) on the pCT or CBCTs from the first treatment
week. In addition, 13 patients were excluded where visual inspec-
tion showed large tumor volume differences between the planning
CT and the first week CBCTs (see Fig. A1), since the model is not
intended to describe such variations.

As a common frame of reference we used an ‘‘average” patient
CTref developed in collaboration with Elekta AB (Stockholm, Swe-
den), using DIR from 109 early stage lung cancer patients (see Sup-
plementary materials Fig. A2). Eleven of the selected patients were
excluded as the DIR had difficulties in deforming the pCT to this
CTref, because these patients were much larger than the reference
template (see Fig. A3). In total 235 patients were eligible for
inclusion.

Deformable image registration

To collect the interfraction geometric variability in a common
reference system, two separate DIR operations were performed
with in-house software: CBCT to pCT, and pCT to CTref. Voxel sizes

of CTs and CBCTs were 1� 1� 3 mm3 and 1� 1� 1 mm3,
respectively.

Both methods used a cubic b-spline algorithm [25,26] based on
a regular grid of control points, driven by correlation ratio [27] as
cost function (more details below). It resulted in a 3D deformation
vector field (DVF) describing the displacement of the source scan
(e.g. pCT) to the target scan (e.g. CBCT). This DVF was defined on
a regular grid in the source scan, thus allowing the deformation
of the target scan to the grid of the source scan. Each DVF is asso-
ciated to a transformation function D.

Geometric variations between pCT and a treatment day of a
patient were characterized by deforming the CBCT to the pCT, with
DVFCBCT!pCT as the result. Before deformation, a local rigid body
registration of the bony anatomy was applied. In the optimization
of the DIR, regularization terms (affine, orthonormality and proper-
ness [28]) were included due to limited CBCT quality to penalize
undesired deformations. Furthermore, a 3 step coarse-to-fine
multi-resolution optimization [29] was performed with a final con-
trol grid spacing of 1.0 cm. This CBCT-to-CT registration in lung
cancer patients was previously validated by Abdoli et al. [30],
and its accuracy was determined to be 1.5 ± 1 mm vector-length.
As the cylindrical Field of View (FOV) of the CBCTs (Fig. A1b) was
smaller (p� 12:5� 12:5� 25 cm3) than the FOV of the pCT, we
limited the deformation to the FOV of the CBCTs.

Each patient was mapped to the reference anatomy by deform-
ing the pCT to the CTref (see Fig. A4), producing DVFpCT!CTref . Unlike
the previous DIR, an initial alignment was obtained by mapping
the center of the pCT to the center of the CTref. As the CTref had
no tumor it was necessary to make an exclusion region around
the primary tumor to prevent it from being deformed during the
deformable registration procedure, while still allowing deformable
registration of the surrounding tissues/organs (Fig. A5). For this
DIR, no regularization terms were included and a 5 step coarse-
to-fine multi-resolution optimization was performed with a final
control grid spacing of 0.5 cm.

Combining deformation vector fields

A DVF⁄ (represented by transformation D�) describing geomet-
ric variations of a patient in the anatomy of the reference patient,
can be obtained by combining its DVFCBCT!pCT and DVFpCT!CTref :

D� ¼ DpCT!CTref � D�1
CBCT!pCT � D�1

pCT!CTref
: ð1Þ

In radiotherapy, one generally distinguishes between system-
atic variations (R: between planned and treatment average) and
random variations (r: between treatment average and daily geom-
etry). By averaging the DVFsCBCT!pCT of the patient, we obtained the
average DVF (hDVFCBCTi), describing the systematic variation in the
anatomy of that patient

hDVFCBCTi ¼ 1
F

XF

f¼1

DVF f
CBCT!pCT; ð2Þ

where F is the number of fractions with CBCT. The DVF describing
the systematic geometric variation (DVFSV) was then obtained by
substituting hDVFCBCTi into Eq. 1. The overall systematic variation
was calculated by taking the root mean square (RMS) over all voxels
of the standard deviations per voxel over all patients of these
DVFSV ’s.

Random variations were calculated based on DVFs of all
patients with more than one CBCT. First we calculated voxel-
wise the standard deviation of the DVFCBCT’s of each patient

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

F � 1

XF

f¼1

DVF f
CBCT!pCT � hDVFCBCTi

� �2

vuut ; ð3Þ

Table 1
Characteristics of the 246 patients included in the analysis.

Characteristics

Gender n (%) Male 156 (63.4)
Female 90 (36.6)

Age [years] mean (range) 65.4 (32–88)
Tumor Location n (%) Right Upper Lobe 98 (38.9)

Right Middle Lobe 13 (5.3)
Right Lower Lobe 29 (11.8)
Left Upper Lobe 57 (23.2)
Right Lower Lobe 32 (13.0)
Mediastinum 17 (6.9)

Stage n (%) IA 5 (2.0)
IB 10 (4.1)
IIA 9 (3.7)
IIB 13 (5.3)
IIIA 101 (41.1)
IIIB 86 (35.0)
IV 18 (7.3)
Unknown/Other 4 (1.6)

Chemotherapy n (%) Yes 171 (69.5)
No 75 (30.5)

Tumor type n (%) Non Small Lung Cancer 220 (89.4)
Small Lung Cancer 20 (8.1)
Unknown (no histology) 6 (2.4)

Interval pCT – 1stCBCT [days] median (range) 10 (2–24)
Available CBCTs per patient n 1 1

2 5
3 67
4 25
5 137
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