
Efficient issue-grouping approach for multiple interdependent issues
negotiation between exaggerator agents

Katsuhide Fujita a,⁎, Takayuki Ito b, Mark Klein c

a Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
b Techno-Business School, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
c Sloan School of Management, Massachusetts Institute of Technology, 5 Cambridge Center, NE25-754, Cambridge, MA 02139, USA

a b s t r a c ta r t i c l e i n f o

Available online 6 June 2013

Keywords:
Multi-issue negotiation
Nonlinear utility
Interdependency issues
Exaggerator agent
Multi-agent system

Many real-world negotiations involve multiple interdependent issues, which makes an agent's utility func-
tions complex, with nonlinear shapes and multiple optima. Traditional negotiation mechanisms were
designed for linear utilities, and do not fare well in nonlinear contexts. One of the main challenges in devel-
oping effective nonlinear negotiation protocols is scalability; it can be extremely difficult to find high-quality
solutions when there are many issues, due to computational intractability. One reasonable approach to re-
ducing computational cost, while maintaining good quality outcomes, is to decompose the contract space
into several largely independent sub-spaces. In this paper, we propose a method based on this concept. A me-
diator finds sub-contracts in each sub-space based on votes from the agents, and combines the sub-contracts
to produce the final agreement. We demonstrate, experimentally, that our protocol allows high-optimality
outcomes with greater scalability than previous efforts. We also demonstrate a method for addressing the po-
tential problem of strategic non-truthful voting by the agents.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Negotiation is an important aspect of daily life and represents an
important topic in the field of multi-agent system research. There
has been extensive work in the area of automated negotiation; that
is, where software agents negotiate with other agents in such con-
texts as e-commerce [13], large-scale deliberation [19], collaborative
design, and so on. Many real-world negotiations are complex, involv-
ing interdependent issues. When designers work together to design a
car, for example, the utility of a given carburetor choice is highly de-
pendent on which engine is chosen. The key impact of such issue de-
pendencies is that they create nonlinear utility functions, with
multiple optima. There has been an increasing interest in negotiation
with multiple interdependent issues [9,17,20,22,23]. To date, howev-
er, achieving high scalability in negotiations with multiple
interdependent issues remains an open problem.

We propose a new protocol in which a mediator tries to reorga-
nize a highly complex utility space with issue interdependencies
into several tractable subspaces, in order to reduce the computational
cost. We call these utility subspaces “Issue groups.” First, the agents
generate interdependency graphs which capture the relationships be-
tween the issues in their individual utility functions, and derive issue
clusters from that. Second, a mediator combines these issue clusters

to identify aggregate issue groups. Finally, the mediator uses a
nonlinear optimization protocol to find sub-agreements for each
issue group based on votes from the agents, and combines them to
produce the final agreement.

We also address the issue of strategic non-truthful voting. In our
protocol, agents can make strong or weak accept/reject votes. Agents
may therefore exaggerate their votes to be always “strong”, which
biases the negotiation outcomes to favor the exaggerator, but at the
cost of reduced social welfare. To address this, we limit the number
of strong votes an agent can make, and investigate its impact of social
welfare.

The remainder of this paper is organized as follows. We describe a
model of multiple interdependent issue negotiation. Next, we present
a clustering technique for finding issue sub-groups. We then propose
a protocol that uses this issue group information to enable more scal-
able negotiations. We also describe the effect of Exaggerator Agents in
multi-agent situations. We present the experimental results, demon-
strating that our protocol produces more optimal outcomes than pre-
vious efforts. Finally, we describe related work and present our
overall conclusions.

2. Negotiation with nonlinear utility functions

2.1. Multi-issue negotiation model

We consider the situation where N agents (a1,…,aN) want to reach
an agreement with a mediator who manages the negotiation from a

Decision Support Systems 60 (2014) 10–17

⁎ Corresponding author. Tel./fax: +81 42 388 7141.
E-mail addresses: katfuji@cc.tuat.ac.jp (K. Fujita), ito.takayuki@nitech.ac.jp (T. Ito),

m_klein@mit.edu (M. Klein).

0167-9236/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dss.2013.05.016

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r .com/ locate /dss

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.dss.2013.05.016&domain=pdf
http://dx.doi.org/10.1016/j.dss.2013.05.016
mailto:katfuji@cc.tuat.ac.jp
mailto:ito.takayuki@nitech.ac.jp
mailto:m_klein@mit.edu
http://dx.doi.org/10.1016/j.dss.2013.05.016
http://www.sciencedirect.com/science/journal/01679236

man-in-the-middle position. There are M issues (i1,…,iM) to be nego-
tiated. The number of issues represents the number of dimensions in
the utility space. The issues are shared: all agents are potentially in-
terested in the values for all M issues. A contract is represented by a
vector of values s

→
= s1,…,sM. Each issue sj has a value drawn from

the domain of integers [0,X], i.e., sj ∈ {0,1,…,X}(1 ≤ j ≤ M).1

An agent's utility function, in our formulation, is described in
terms of constraints. There are l constraints, ck ∈ C. Each constraint
represents a volume in the contract space with one or more dimen-
sions and an associated utility value. ck has value wa ck ; s

→
� �

if and
only if it is satisfied by contract s

→
. Function δa(ck,ij) is a region of ij

in ck, and δa(ck,ij) is ∅ if ck doesn't have any relationship to ij. Every
agent has its own, typically unique, set of constraints.

An agent's utility for contract s
→

is defined as the sum of the

utility for all the constraints the contract satisfies, i.e., as ua s
→

� �
¼

∑
ck∈C; s

→∈x ckð Þwa ck ; s
→

� �
, where x(ck) is a set of possible contracts

(solutions) of ck. This formulation produces complex utility functions
with high points where many constraints are satisfied and lower re-
gions where few or no constraints are satisfied. Many real-world util-
ity functions are quite complex in this way, involving many issues as
well as higher-order (e.g. binary, trinary and quaternary) constraints.
This represents a crucial departure from most previous efforts on
multi-issue negotiation, where contract utility has been calculated
as the weighted sum of the utilities for individual issues, producing
utility functions shaped like hyper-planes, with a single optimum.

This constraint-based utility function representation allows us to
capture the issue interdependencies common in real-world negotia-
tions. The constraint in Fig. 1, for example, captures the fact that a
value between 3 and 7 is desirable for issue 1 if issue 2 has the
value 4, 5 or 6. If we have many such constraints, we can create highly
complex utility functions as show in Fig. 1. Note, however, that this
representation is also capable of capturing linear utility functions as
a special case. A negotiation protocol for complex contracts can,
therefore, handle linear contract negotiations. This formulation was
described in [9]. In [17,20,21], a similar formulation is presented
that supports a wider range of constraint types.

The objective function for our protocol can be described as fol-
lows:

arg max
s
→

∑
a∈N

ua s
→

� �
: ð1Þ

arg max
s
→

ua s
→

� �
; a ¼ 1;…;Nð Þ: ð2Þ

Our protocol, in other words, tries to find contracts that maximize
social welfare, i.e., the summed utilities for all agents. Such contracts,
by definition, will also be Pareto-optimal. At the same time, all the
agents try to find contracts that maximize their own welfare.

3. Our negotiation protocol

3.1. Decomposing the contract space

It is of course theoretically possible to gather all of the individual
agents' utility functions in one central place and then find all optimal
contracts using such well-known nonlinear optimization techniques
as simulated annealing or evolutionary algorithms. However, we do
not employ such centralized methods for negotiation purposes be-
cause we assume, as is common in negotiation contexts, that agents

prefer not to share their utility functions with each other, in order
to preserve a competitive edge.

Our approach is described in the following sections.

3.2. Analyzing issue interdependency

The first step is for each agent to generate an interdependency
graph by analyzing the issue interdependencies in its own utility
space. We define issue interdependency as follows. If there is a con-
straint between issue X (iX) and issue Y (iY), then we assume iX and
iY are interdependent. If, for example, an agent has a binary constraint
between issue 1 and issue 3, those issues are interdependent for that
agent.

The strength of issue interdependency is captured by the inter-
dependency rate. We define the interdependency rate between two
issues as the number of constraints that inter-relate them. The
interdependency rate between issue ij and issue ijj for agent a is thus
Da(ij,ijj) = #{ck|δa(ck,ij) ≠ ∅ ∧ δa(ck,ijj) ≠ ∅}.

Agents capture their issue interdependency information in the
form of interdependency graphs i.e. weighted non-directed graphs
where a node represents an issue, an edge represents the inter-
dependency between issues, and the weight of an edge represents
the interdependency rate between those issues. An interdependency
graph is thus formally defined as: G(P,E,w) : P = {1,2,…,|I|}(finite set),
E ⊂ {{x,y}|x,y ∈ P},w : E → R.

Fig. 2 shows an example of an interdependency graph.

3.3. Grouping issues

In this step, the mediator employs breadth-first search to combine
the issue clusters submitted by each agent into a consolidated set of
issue groups. For example, if agent 1 submits the clusters {i1,i2},{i3,i4,i5},
{i0,i6} and agent 2 submits the clusters: {i1,i2,i6},{i3,i4},{i0},{i5}, the media-
tor combines them to produce the issue groups {i0,i1,i2,i6}, {i3,i4,i5}. In the
worst case, if all the issue clusters submitted by the agents have
overlapping issues, the mediator generates the union of the clusters
from all the agents. The details of this algorithm are given in Algorithm 1.

Algorithm 1. Combine_IssueGroups(G)

It is possible to gather all of the agents' interdependency graphs in
one central place and then find the issue groups using standard clus-
tering techniques. However, it is hard to determine the optimal num-
ber of issue groups or the clustering parameters in central clustering
algorithms, because the basis of clustering for every agent can be dif-
ferent. Our approach avoids these weaknesses by requiring that each
agent generates its own issue clusters. In our experiments, agents did

1 A discrete domain can come arbitrarily close to a ‘real’ domain by increasing its
size. As a practical matter, many real-world issues that are theoretically ‘real’ numbers
(delivery date, cost) are discretized during negotiations.

11K. Fujita et al. / Decision Support Systems 60 (2014) 10–17

Download English Version:

https://daneshyari.com/en/article/553480

Download Persian Version:

https://daneshyari.com/article/553480

Daneshyari.com

https://daneshyari.com/en/article/553480
https://daneshyari.com/article/553480
https://daneshyari.com

