
HANA: A Human-Aware Negotiation Architecture

Angela Fabregues ⁎, Carles Sierra
Artificial Intelligence Research Institute (IIIA-CSIC), Campus Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

a b s t r a c ta r t i c l e i n f o

Available online 5 June 2013

Keywords:
Multiagent systems
Agent architecture
Automated negotiation
Practical reasoning
Search&negotiation
Diplomacy Game

In this paper we propose HANA, a software architecture for agents that need to bilaterally negotiate joint
plans of action in realistic scenarios. These negotiations may involve humans and are repeated along time.
The architecture is based on a BDI model that represents the uncertainty on the environment as graded
beliefs, desires and intentions. The architecture is modular and can easily be extended by incorporating
different models (e.g. trust, intimacy, personality, normative…) that update the set of beliefs, desires or in-
tentions. The architecture is dynamic as it monitors the environment and updates the beliefs accordingly.
We introduce an innovative search&negotiation method that facilitates HANA agents to cope with huge
spaces of joint plans. This method implements an anytime search algorithm that generates partial plans to
feed the negotiation process. At the same time the negotiation guides the search towards joint plans that
are more likely to be accepted.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the development of software shifted towards networked
systems in the mid 90s a lot of work has been done on automated
bilateral negotiations [13,26]. In most previous work autonomous
software agents, usually selfish, interact using utility maximisation
strategies [20,27,37]. These strategies usually work well when negoti-
ation happens between software agents but not necessarily when
humans are involved in the negotiations as recent work shows [25].
This is in part because humans do not follow a constructivist sort of ra-
tionality [8,41]. For instance, human decisions depend a lot on their
social relationships [40], on emotions [14] and are contextualised in
a particular culture [15].

Our long term research goal is to build software agents capable of
negotiating with humans in complex real scenarios, more concretely,
on how to negotiate joint plans of action among software agents and
humans when bilateral negotiations can be intermingled. In this work
we contribute to this agenda by formally describing the negotiation
problem and by providing a concrete agent architecture. The architec-
ture contains a number of elements that make it suitable for
non-constructivist negotiations — by incorporating emotions, and
apt for negotiating over large spaces of joint plans — by concurrently
negotiating and searching for solutions. The architecture is inspired
by an ecological type of rationality [18] as developed in the LOGIC
theory of agency [40] and goes beyond it by proposing a concrete
computational solution.

More concretely, we address in this paper the complex problem of
simultaneous, repeated and bilateral negotiations in competitive
environments. The agents are either software or human agents that
compete but can occasionally co-operate. The negotiation objects
are joint plans of action. We are specially interested in negotiation
domains that have a very large set of potential joint action plans as
these are those with potential commercial interest (e.g. time tabling,
team formation, supply chain management, gaming). In these scenar-
ios, agents (and humans) need to negotiate joint action plans to
improve their outcome. For instance, two teachers swapping time
slots in their class schedules, or two members of a potential team
negotiating the tasks to be performed. The environment is generally
observable but the internal state of the other agents and their negoti-
ations are usually private, that is, every agent can see the messages
that it sends or receives but not the messages exchanged between
any two other agents. In open systems, that is, systems that allow
unrestricted access of autonomous entities (either software agents
or humans), reaching agreements on joint action plans is the way to
figure out what our counterparts will do, and even this is only to a
certain extent as in some domains defection is possible. For instance,
in Diplomacy, the case study used in this paper, a promise made by a
player to perform a certain action may not materialise.

Negotiations are usually time framed. There is a deadline by which
a negotiation process has to be finished. When these deadlines are
tight, negotiators need to search quickly for good enough negotiation
proposals instead of looking for optimal proposals. For large solution
spaces it is either not possible or too long to find them. This is, in fact,
very common in humans' everyday life. Humans do not hesitate to
take good enough decisions instead of waiting to be sure that the
decision to take is the best one. Humans behave well in uncertain
and competitive environments, as we are unsure of what the others

Decision Support Systems 60 (2014) 18–28

⁎ Corresponding author.
E-mail addresses: fabregues@iiia.csic.es (A. Fabregues), sierra@iiia.csic.es (C. Sierra).

0167-9236/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dss.2013.05.017

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r .com/ locate /dss

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.dss.2013.05.017&domain=pdf
http://dx.doi.org/10.1016/j.dss.2013.05.017
mailto:fabregues@iiia.csic.es
mailto:sierra@iiia.csic.es
http://dx.doi.org/10.1016/j.dss.2013.05.017
http://www.sciencedirect.com/science/journal/01679236


will do and taking decisions quickly may be advantageous as the
more time we wait the less opportunities to close a deal may be
there. If an agent waits too long others may have reached agreements
that are incompatible with the plans the agent likes.

The scenarios we are interested in witness repeated negotiations,
for instance teachers negotiate every semester, or members of
teams negotiate tasks for each problem to solve. These repeated inter-
actions permit agents to build relationships, check whether the
agreements are kept and act accordingly. If an agent breaks an agree-
ment, it may become untrustworthy and the other agent involved in
the agreement may penalise it [21,24]. A good way to penalise an
agent is ignoring it, rejecting every proposal it makes as it makes little
sense to reach agreements with someone that is untrustworthy: it
will probably break the deal.

In summary, we address the problem of simultaneous bilateral ne-
gotiation of joint plans of action in competitive environments with
repeated negotiation encounters and repeated rounds of plan execu-
tion. In these environments negotiation speed is crucial because as
time goes by the number of available joint plans that can be accepted
decreases.

The paper is structured as follows. We start providing a formal
specification of the problem including the negotiation protocol and
our case study in Section 2. Then, we introduce the agent architecture
in Section 3 and describe its components in Sections 4, 5 and 6. Finally,
we conclude with a discussion and future work in Section 7.

2. Resource negotiation problems

In this section we formalise bilateral resource negotiation prob-
lems (RNP), that is, scenarios where agents negotiate about which
actions to perform on the resources they control. The environment
is dynamic, as it changes due to the uncontrollable actions of others.
At each point in time its state contains a partition of the resources
where each set of the partition corresponds to the resources con-
trolled by a particular agent. The actions executed by agents make
the environment evolve. We model this evolution as a transition
function between environment states. We assume without loss of
generality that actions are performed synchronously at particular
points in time. Also, we assume that negotiations between agents
are iterative over a two-step process: (i) agents sign agreements on
what actions to perform, and (ii) they execute the actions of the
agreements. In the following two subsections we provide the formal
specification of the environment and the negotiation protocol, and
in the last subsection we introduce the game Diplomacy as an exam-
ple of RNP. Diplomacy will be the case study used throughout the
paper.

2.1. Environment

We consider environments that are fully observable and regulated
by a set of rules (physical or otherwise) that determine their evolu-
tion. Environments are populated by agents A that control resources
R and are always in one of several possible states.

Definition 1. Given a set A of agents and a set R of resources, an
environment state ω ⊆ A × R is a set of agent–resource pairs. We de-
note by W the set of all possible environment states, that is W = 2A × R.

〈α, r〉 ∈ ω means that agent α controls resource r and thus is the
only agent that can act upon it.1 We assume the existence of a finite
set of operators Op that agents can apply to the resources they

control. For instance, consuming the resource or transforming it. We
thus define the set of possible actions as follows.

Definition 2. The set of actions is the set A = A × Op × R.

We restrict the model to environments where no more than one
operator can be applied to a resource simultaneously. This naturally
leads to the definition of compatibility between actions.

Definition 3. Two actions a, b ∈ A such that a = 〈α, opa, ra〉 and b =
〈β, opb, rb〉, are compatible, denoted by comp(a, b), if and only if
opa = opb implies ra ≠ rb.

Controlling a resource means that only the agent that controls the
resource can act upon it. This is our notion of action feasibility.

Definition 4. An action a = 〈α, op, r〉 ∈ A is feasible in state ω ∈ W,
denoted by feasible(a, ω), if and only if 〈α, r〉 ∈ ω.

Actions are naturally grouped in sets, that we call plans, that with-
out losing generality we can assume are executed at a given instant of
time. Note that an agent can control more than one resource.

Definition 5. A plan p ⊆ A is a set of actions. The set of all possible plans
is denoted by P = 2A.

We extend the notion of feasibility to plans in a natural way.

Definition 6. Given a state ω ∈ W we say that plan p ∈ P is feasible in
state ω, denoted feasible(p, ω), if and only if for all a, b ∈ p, feasible(a, ω)
and comp(a, b) hold. The set of all feasible plans in stateω is denoted by Pω.

Two feasible plans are compatible if their actions are pair-wise
compatible. That is, if its union is feasible.

Definition 7. Given a stateω ∈ Wand plans p, q ∈ P,we say that plans
p and q are compatible, denoted comp(p, q), if and only if their union is
feasible, that is, comp(p, q) ⇔ p ∪ q ∈ Pω.

When an action is selected for each resource the plan is complete.

Definition 8. Given a state ω ∈ W and a plan p ∈ P, we say that plan
p is a complete plan for ω if and only if feasible(ω, p) holds and for all
〈α, r〉 ∈ ω then 〈α, op, r〉 ∈ p for some op ∈ Op. We denote the set of
all complete plans for state ω by P

ω
p Pω and by P

ω
α the projection of

complete plans for α.

Now we have all the ingredients to define environments as a type
of deterministic transition system. That is, as a finite state machine
with an initial state, with a set of final states, and with complete
plans labelling the arcs between states.

Definition 9. A state transition system is a tuple

Ω ¼ A;R;Op;W; P; T;ω0;Wf

D E

where:

– A is a set of agents
– R is a set of resources
– Op is a set of operators
– W = 2A × R is a set of states
– P = 2A × Op × R is a set of plans
– T: W × P → W is a transition function such that T(ω, p) is defined

for all p∈P
ω

– ω0 ∈ W is the initial state
– Wf p W is the set of final states.1 We will use the notation 〈·〉 to denote elements of Cartesian products.

19A. Fabregues, C. Sierra / Decision Support Systems 60 (2014) 18–28



Download English Version:

https://daneshyari.com/en/article/553481

Download Persian Version:

https://daneshyari.com/article/553481

Daneshyari.com

https://daneshyari.com/en/article/553481
https://daneshyari.com/article/553481
https://daneshyari.com

