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Bilateral agent negotiation is considered as a fundamental research issue in autonomous agent negotiation,
and was studied well by researchers. Generally, a predefined negotiation decision function and utility func-
tion are used to generate an offer in each negotiation round according to a negotiator's negotiation strategy,
preference, and restrictions. However, such a negotiation procedure may not work well when the
negotiator's utility function is nonlinear, and the unique offer is difficult to be generated. That is because if
the negotiator's utility function is non-monotonic, the negotiator may find several offers that come with
the same utility at the same time; and if the negotiator's utility function is discrete, the negotiator may not
find an offer to satisfy its expected utility exactly. In order to solve such a problem, we propose a novel ne-
gotiation model in this paper. Firstly, a 3D model is introduced to illustrate the relationships between an
agent's utility function, negotiation decision function and offer generation function. Then two negotiation
mechanisms are proposed to handle two types of nonlinear utility functions respectively, i.e. a multiple
offer mechanism is introduced to handle non-monotonic utility functions, and an approximating offer mech-
anism is introduced to handle discrete utility functions. Lastly, a combined negotiation mechanism is pro-
posed to handle nonlinear utility functions in general situations by considering both the non-monotonic
and discrete. The experimental results demonstrate the effectiveness and efficiency of the proposed negoti-
ation model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Agent negotiation is one of the most significant research issues in
multi-agent systems (MASs). Many works have been done to solve
challenges in agent negotiation. To list a few of them, Narayanan
and Jennings [13,14] adopted a Markov chain framework to model bi-
lateral negotiation and employed Bayesian learning to enable agents
to learn an optimal strategy in incomplete information settings.
Fatima et al. [4] investigated the negotiation outcomes in incomplete
information settings through the comparison of the difference be-
tween two agent's negotiation deadlines, and proposed an agenda-
based framework to help self-interested agents to maximize their
utilities. Brzostowski and Kowalczyk [1] proposed an approach to
predict the opponent's behaviors based only on the historical offers
of the current negotiation. They claimed that time and imitation are
two main factors which influence an agent's behaviors during negoti-
ation. Ren et al. [16] proposed a market-based model to handle the
uncertainty and concurrency in open and dynamic negotiation envi-
ronments. However, most existing approaches are based on the as-
sumption that all negotiators employ monotonic continuous linear
utility functions, and not much work has been done on negotiations

in which agents employ non-monotonic and/or discrete nonlinear
utility functions. According to our studies, agents may employ such
nonlinear utility functions in many real-world negotiations [11,12].
For example, as shown in Fig. 1, in a scheduling problem for task allo-
cation, an employee feels happy to be assigned work between 9 AM–

12 AM and 1 PM–3 PM, but feels unhappy to work hard during the
first one or last 2 h of a day. The employee's temper in a working
day is a non-monotonic function. In Fig. 2, a potential car purchaser
may have different preferences on a car's color. Because each model
of a car only has limited colors, the car purchaser's preference on a
car's color is a discrete function.

In a negotiation with time constraint, an agent usually defines a
negotiation strategy to make concessions throughout a negotiation.
Firstly, according to the negotiation decision function, agents can cal-
culate the possible maximal utility they can gain at a certain moment.
Then, according to the offer generation function, agents can find a
particular offer to reach their expected utility. Because most negotia-
tion models assume that agents employ monotonic and continuous
utility functions, a particular offer can always be found to satisfy
agents expected utilities at any negotiation round. Also, it can be
guaranteed that the concessions from opponent's offers are always
consistent, i.e., always monotonically increasing or decreasing the
agents' utilities. However, when agents employ non-monotonic and/
or discrete utility functions, it cannot be guaranteed that the
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opponent's offers are always in an ascending or descending order.
Also, the particular offer which can exactly match the expected utility
may not be found. Therefore, when the utility function is non-
monotonic, agents may have multiple options on offers in order to
reach the expected utility. As shown in Fig. 1, in order to ensure
that an employee's happiness is p (p ∈ [0, 1]), a job can be assigned
to the employee at either 9 AM or 12 AM. Also, when the utility func-
tion is discrete, an agent perhaps cannot find an offer to satisfy the
expected utility exactly. As shown in Fig. 2, none of the available
colors can make a car purchaser's happiness equal to q (q ∈ [0, 1])
exactly.

In order to solve the offer generation problem when agents em-
ploy nonlinear utility functions, we propose a novel negotiation
model in this paper, which can handle both the situations when
agents have non-monotonic and/or discrete utility functions. Specifi-
cally, for negotiations involving non-monotonic utility functions, the
multiple offer mechanism is introduced to allow agents to generate
equivalent offers in a negotiation round; for negotiations involving
discrete utility functions, the approximating offer mechanism is in-
troduced to allow agents to generate an offer to approximate their
expected utilities. Eventually, the two mechanisms are combined to
solve general situations in negotiations involving nonlinear utility
functions. Furthermore, when utility functions are non-monotonic,
the existing alternating offer protocol [15] may become inefficient
in enlarging agents' profits. That is because the existing alternating
offer protocol assumes an agent has a consistent evaluation on offers'
changes, i.e., when an agent gradually makes concessions to decrease
own profit, the opponent's profit will be gradually increased, and vice
versa. However, such an assumption is not held when agents employ
non-monotonic utility functions. In order to help agents to make de-
cisions on trade off in such a situation, a new negotiation protocol is
proposed based on the alternating offer protocol.

The rest of this paper is organized as follows. Section 2 briefly in-
troduces a general bilateral single issue negotiation model with linear
utility functions. Section 3 introduces our 3D negotiation model, the
multiple offer mechanism to handle non-monotonic utility functions,
the approximating offer mechanism to handle discrete utility func-
tions, and the combined mechanism to handle general nonlinear

utility functions. In Section 4, the Rubinstein's alternating offer proto-
col is modified to fit the situation caused by non-monotonic and/or
discrete utility function. Section 5 demonstrates a negotiation be-
tween two agents having nonlinear utility functions. Section 6 com-
pares our work with some related work on handling negotiations
with nonlinear utility functions. Section 7 concludes this paper and
explores our future work.

2. A general negotiation model for linear utility function

Before we introduce the negotiation model for nonlinear utility
functions, we would like to briefly introduce a general negotiation
model for linear utility functions by considering time constraints. A
general bilateral single issue negotiation is performed between two
agents on a good's price. Let b denote the buyer, s denote the seller,
and let [IPa, RPa] denote the range of values for prices that are accept-
able to Agent a, where a ∈ {b,s}. IPa is Agent a's initial price and RPa is
Agent a's reservation price. Usually, for a buyer agent IPb ≤ RPb, and
for a seller agent IPb ≥ RPb. We use â to denote Agent a's opponent,
â∈ b; sf g. Obviously, an agreement can be reached between Agent a
and its opponent â only when there is an intersection between their
price ranges. If the buyer agent's reservation price is smaller than
the seller agent's reserved price (i.e., RPb b RPs), an agreement will
not be achieved.

Usually, a negotiation should consider time constraint, and each
agent has a negotiation deadline. If an agreement cannot be achieved
before an agent's deadline, then the agent has to quit the negotiation,
and the negotiation fails. Let Ta denote Agent a's deadline. A negotia-
tion can be started by either the buyer or seller. During the negotia-
tion, the buyer and the seller will send alternating offers to each
other until both sides agree on an offer together, or one side quits
the negotiation. This negotiation protocol is known as the alternating
offer protocol [15]. Let ptâ→a denote the price sent from Agent â to
Agent a at time t. Once Agent a receives the offer, it will map the
price in the offer to a utility value by using its utility function Ua. A
general linear utility function used by Agent a is shown in Eq. (1).

Ua ptâ→a

� �
¼ ptâ→a−RPa

IPa−RPa ð1Þ

It can be seen that a general linear utility function normalizes a
price to a utility value in-between [0,1] by using the predefined initial
price (IPa) and reservation price (RPa). The utility value indicates the
profit that the agent can gain by accepting the offer ptâ→a. In general,
for Agent a, if Ua ptâ→a

� �
is greater than the value of the counter-

offer Agent a is ready to send in the next negotiation round t′,

i.e., Ua ptâ→a

� �
≥Ua pt

′

a→â

� �
, then Agent a will accept Agent â's offer at

round t and the negotiation completes successfully with the agree-

ment ptâ→a. Otherwise, the counter-offer pt
′

a→â will be sent from
Agent a to Agent â. Such a procedure will be repeated until an agree-
ment is achieved or one agent reaches its deadline. Thus, the action,
Aa, that Agent a takes at each negotiation round t is usually defined as
follows:

Aa ptâ→a

� �
¼

Quit
Accept ptâ→a

Offer pt
′

a→â

if t > Ta
;

if Ua ptâ→a

� �
≥Ua pt

′

a→â

� �
;

otherwise:

8><
>: ð2Þ

If Agent a does not accept the price ptâ→a and its deadline is not
achieved, then it will send a counter-offer pt

′

a→â to Agent â as a re-
sponse. Usually, agents may employ different negotiation tactics [3]
to generate counter-offers based on different criteria, such as time, re-
sources, and previous counter-offers. The time-dependent tactic is the
most popular criteria when agents generate their counter-offers by

Fig. 1. An employee's temper for a day.

Fig. 2. A customer's flavor on a car's color.
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