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ABSTRACT

Feed efficiency (FE), characterized as the fraction of 
feed nutrients converted into salable milk or meat, is 
of increasing economic importance in the dairy indus-
try. We conjecture that FE is a complex trait whose 
variation and relationships or partial efficiencies (PE) 
involving the conversion of dry matter intake to milk 
energy and metabolic body weight may be highly het-
erogeneous across environments or management scenar-
ios. In this study, a hierarchical Bayesian multivariate 
mixed model was proposed to jointly infer upon such 
heterogeneity at both genetic and nongenetic levels on 
PE and variance components (VC). The heterogeneity 
was modeled by embedding mixed effects specifications 
on PE and VC in addition to those directly specified 
on the component traits. We validated the model by 
simulation and applied it to a joint analysis of a dairy 
FE consortium data set with 5,088 Holstein cows from 
13 research stations in Canada, the Netherlands, the 
United Kingdom, and the United States. Although no 
differences were detected among research stations for 
PE at the genetic level, some evidence was found of 
heterogeneity in residual PE. Furthermore, substantial 
heterogeneity in VC across stations, parities, and ration 
was observed with heritability estimates of FE ranging 
from 0.16 to 0.46 across stations.
Key words: dry matter intake, genetic correlation, 
heritability, hierarchical Bayesian modeling

INTRODUCTION

Feed efficiency (FE) is becoming more important for 
the economic and environmental sustainability of dairy 
production and increases as a greater proportion of feed 
nutrients are directed toward milk production (Con-
nor, 2015). A commonly used measure of FE is residual 
feed intake (RFI), which is defined as the difference 
between actual and predicted DMI. That is, RFI re-
sponses are typically derived as the estimated residuals 
from a linear model analysis whereby partial regression 
relationships are specified between DMI and energy 
sink covariates such as milk energy (MILKE) and 
metabolic BW (MBW), for example. Given that there 
has been some reluctance to directly incorporate RFI 
in breeding goals for several different reasons (Berry 
and Pryce, 2014), some investigators have focused their 
attention on DMI as the key phenotype for FE analyses 
(Berry et al., 2014; de Haas et al., 2015).

Recently, Lu et al. (2015) proposed a multiple-trait 
(MT) mixed model analysis of DMI with MILKE and 
MBW that further resolves whether RFI or DMI should 
be considered as the key response variable for FE. They 
demonstrated that Cholesky decompositions performed 
on each of the estimated (e.g., by REML) 3 × 3 genetic 
and residual variance-covariance matrices among the 3 
key traits (MILKE, MBW, and DMI) lead to a param-
eterization whereby the estimated partial regression 
relationships between DMI with MILKE, and between 
DMI with MBW are essentially partitioned into genetic 
and residual components. Additionally, the Cholesky 
decomposition leads to a determination of EBV for FE 
that is identical to that based on a classical RFI analy-
sis under the special case whereby the partial regression 
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relationships relating DMI to MILKE and to MBW are 
specified to be identical at both genetic and residual 
levels. As a corollary, Lu et al. (2015) demonstrated by 
simulation that the greater the discrepancy between the 
partial relationships at genetic and nongenetic levels, 
the greater the EBV accuracy for their proposed MT 
approach relative to a classical RFI analysis. Further-
more, the MT approach facilitates the incorporation of 
data on cows that might be missing, even selectively, 
on any of the 3 key phenotypes that would otherwise be 
discarded in a RFI analysis (Pollak et al., 1984).

A hierarchical Bayesian extension of a 2-trait MT 
model was developed earlier in a nongenetic context 
by (Bello et al., 2010) who later inferred heterogeneous 
partial regression relationships between calving inter-
vals and milk yield at both herd and cow levels as a 
function of environmental and herd management fac-
tors for Michigan dairy herds (Bello et al., 2012). We 
surmise that the genetic and residual partial relation-
ships between DMI with MILKE, or between DMI with 
MBW, could also be modeled as a linked multifactorial 
function of various factors including parities, research 
stations, and rations, for example. Indeed, based on 
station-specific RFI analyses, Tempelman et al. (2015) 
determined that estimated partial regression coefficients 
of DMI on MILKE and on MBW were highly hetero-
geneous across research stations in several countries. 
Furthermore, adaptation of the hierarchical Bayesian 
approach as proposed by Bello et al. (2010) would also 
infer the degree of heterogeneity in heritabilities of FE 
across different management conditions.

The 2 primary objectives of this study were (1) to 
identify potential management or environmental factors 
that might affect genetic and residual partial regression 
relationships (i.e., partial efficiencies; PE) between 
DMI with MILKE, and between DMI with MBW, and 
(2) to determine whether there is evidence of hetero-
geneity of genetic and residual variances for FE across 
these same management or environmental factors.

MATERIALS AND METHODS

Multiple Trait Model

Our developments closely combine developments 
provided in Lu et al. (2015) with those provided in 
Bello et al. (2010). The 3 key component traits of FE 
are numbered as follows in the MT model: (1) MILKE, 
(2) MBW, and (3) DMI. We write this MT model as 
follows:

 .y X Z u ei i i i= + +β  [1]

Here, yi i i iy y y= [ ]1 2 3 ' is the vector of responses for 
the 3 traits on record or animal i, i = 1, 2, 3, …, n. 
Furthermore, β β β β= [ ]1 2 3' ' ' ' is the vector of fixed 
effects connected to yi by known incidence matrix 
Xi = ⊗ ′( )I x3 i  such that βj denotes the subvector of 
fixed effects for trait j (j = 1, 2, 3). Note that ⊗ denotes 
the Kronecker product such that we assume the same 
fixed effects incidence row vector ′xi for each of the 3 
traits for ease of presentation, although further gener-
alization is possible. Similarly, u u u u= 
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vector for animal genetic effects connected to yi by 
known incidence matrix Zi = ⊗ ′( )I z3 i  such that 
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 denotes the subvector of random genetic 

effects on trait j for all n animals. Hence, we also as-
sume the same random effects incidence row vector ′zi 
for each of the 3 traits, although again further general-
ization is possible. To further simplify presentation, we 
specifically focus on the situation where there is 1 re-
cord per animal, and genetic merit is explicitly modeled 
only for animals having records, although extensions to 
the more common situation where genetic evaluations 
are also desired on animals without any records or mul-
tiple records is readily apparent. Finally, 
ei i i ie e e= [ ]1 2 3 ' denotes the sub-vector of residuals 
for the 3 traits on animal i. Now ei is assumed to be 
independently multivariate normal across animals; that 
is, e 0 Ri iMVN~ , ,( )  where Ri denotes the 3 × 3 residu-
al (co)variance matrix among 3 traits specific for ani-
mal i.

Now u can be alternatively reordered by traits within 
animals; i.e., u u u u= [ ]1 2. . .� n  with ui ij j

u. = { }
=1
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denoting the vector of random genetic effects for the 3 
traits on animal i. Because of potential correlations 
between animal effects due to, for example, the nu-
merator relationship matrix A, the breeding values ui 
and ui ' for animals i and i′ i i≠( )'  are not necessarily 
independent of each other. To flexibly allow for such 
correlation as well as for subject-specific genetic trait 
variances and covariances as developed later, we invoke 
a Cholesky decomposition on A, writing A = CC’. For 
clarity of presentation, we specify the dimension of A 
as n × n such that it only pertains to relationships 
between animals with records; nevertheless, its con-
struction should be suitably based on all available an-
cestor information. In other words, we define A as a 
subset of a larger numerator relationship matrix that 
involves both animals with records and their ancestors. 
Nevertheless, if genetic evaluations are also desired on 
ancestors, the dimensions of both A and ′∀zi i can be 
augmented accordingly. We define u.
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