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a b s t r a c t

Growing availability of long-term satellite imagery enables change modeling with advanced spatio-
temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-
temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis
over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series
for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend)
change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change
and a change point time locating process. We extend the EFP to account for the spatial autocorrelation
between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite
image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series
residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a
unified data structure for the modeling process, R to execute the analysis, and an array database manage-
ment system to scale computation. Our results point to BFAST as a robust approach against mild temporal
and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and
towards communicable and scalable analysis.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Advanced earth observation satellite sensors provide remote
sensing products that are rich in spatial, temporal, and spectral
information. Open access policies of space agencies and the pro-
gress of remote sensing technologies make these products more
accessible, which enables a wide range of novel applications, such
as near real-time global change monitoring. This, however, calls for
efficient handling and scalable processing of the massive amounts
of available data. Major challenges include big data management,
multidimensional data information extraction, and complex
large-scale spatio-temporal change modeling procedures imple-
mentation and result visualization. These challenges call for novel
data management and analytics tools and advanced spatio-
temporal statistical algorithms.

Typical remote sensing satellite images are regularly discretised
in space and time, and can naturally be represented as multidi-
mensional arrays. The array data structure facilitates change

modeling in many ways. Firstly, the array data structure allows a
clean data processing procedure which simplifies data preparation,
and avoid data structure conversions during the analysis. Wickham
(2014) calls the unified data preparing process to ‘‘tidy data”, and
suggests restructuring all datasets into single, long tables. Since
most earth observation data (i.e. earth information collected by
remote sensing technologies) come as time series of multispectral
images, and structuring such datasets into arrays is the more
natural approach for data storage, analysis and visualization. In
addition, the array data structure allows flexible application of
spatio-temporal statistical algorithms (Zscheischler et al., 2013)
and other information extraction methodologies (Mello et al.,
2013), which was already exploited in the on-line analytical pro-
cessing (OLAP) approach to analyze business data (Chaudhuri
and Dayal, 1997; Viswanathan and Schneider, 2011). Finally, the
array data structure facilitates parallelizing of the modeling
process (Stonebraker et al., 2013). Array Data Management and
Analytics Software (DMAS), which stores and operates on data as
multidimensional arrays, can thus be used to scale the process
and resolve the difficulties of large memory consumption and com-
putational bottlenecks usually found in non-parallelized systems.
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Examples of array DMAS include SciDB (Cudre-Mauroux et al.,
2009) and rasdaman (Baumann, 1994).

Remotely sensed image time series analysis (Verbesselt et al.,
2010; Broich et al., 2011) has been drawing more attention in
pixel-based change detection in recent years (Jianya et al., 2008;
Banskota et al., 2014) due to the increased availability of long-
term satellite image time series and improved computational
power. Statistically, these methods can be classified as detecting
change in mean (Kuan and Hornik, 1995), (e.g. by tests based on
OLS (Ordinary Least Squares) residuals such as CUSUM (Cumula-
tive Sum) test (Brown et al., 1975)), or change in regression param-
eters, (e.g. by tests that assess all regression coefficients such as
supLM (supremum Lagrange Multiplier) test (Andrews, 1993;
Zeileis and Hothorn, 2013)). Change detection with time series
imagery solves many problems that are infeasible with bi-
temporal analysis (Coppin et al., 2004; Jianya et al., 2008). There
are several examples: (1) image time series analysis enables detec-
tion of unknown historical changes retrospectively, and monitor-
ing of changes in near real-time (Verbesselt et al., 2012); (2)
image time series analysis is able to classify land cover types that
are of subtle differences in reflection. For example, one difficulty in
analyzing tropical forest conservation from remotely sensed ima-
gery pairs is to discriminate plantations from secondary forests
(Lucas et al., 1993); (3) the regression model is flexible, and can
integrate variables that will affect the process. For example, it is
hard to distinguish between climate-induced forest drought and
anthropogenic deforestation. Integration of climate variables, such
as precipitation and temperature, can assist differentiating
between these changes (Dutrieux et al., 2015); (4) in terms of reli-
ability, satellite image time series analysis has the advantage of
being more resistant to noise (Coppin et al., 2004).

One popular time series change detection tool that raised
attention in image time series analysis is BFAST (Breaks For Addi-
tive Season and Trend) (Verbesselt et al., 2010, 2012). BFAST con-
stitutes a change detection procedure on top of a comprehensive
set of serial structural change detection tools. BFAST has been
applied in various cases, such as detection of shifts in vegetation
trends (Jong et al., 2012; Forkel et al., 2013). BFAST detects the
structural change in trend and seasonality of a time series, which
has many applications. For example, the seasonality between
agriculture products (e.g. soybean) and rainforest are different,
which enables the discrimination of different kinds of forest dis-
turbances (e.g. changes from forest to agriculture vs. forest fire).
BFAST treats observations as serially uncorrelated. Since it models
pixel time series independently, possible spatial correlation
around the area is ignored. Simple extensions to BFAST could
model the residuals as an autoregressive (AR) process, and/or
adopt a simultaneous autoregressive (SAR) model for the spatial
residual process.

In this paper, we apply BFAST to our study region, and evaluate
the effect of extending BFAST with temporal and spatial correla-
tions. We want to do this in such a way that (1) it can be extended
to global-scale data and (2) it is reproducible by other scientists
within a reasonable effort. This means that we need to use a
high-level data analysis language, such as R; that we need to use
an open source Array Data Management and Analytics Software
(DMAS) that allows parallel execution of the R code; and finally
that we publish all the scripts to recreate the database and carry
out the computational experiments on the data.

The study case concerns historical forest cover change detection
with long-term MODIS image time series. We show how pixel-
based time series analysis are extended to region-based joint
spatio-temporal analysis, how the whole change modeling process
and spatio-temporal information exploitation are simplified by
multidimensional arrays, and how Array DMAS implement
and scale the process. The study case is extensible and the

methodologies are generic and can form the basis for further
remote sensing data experiments.

The paper is organized as follows. Section 2 introduces and dis-
cusses multidimensional arrays. Section 3 describes how we model
spatio-temporal change. Section 4 introduces the study case. Sec-
tion 5 presents results, and Sections 6 and 7 finish with discussion
and conclusions, respectively.

2. Multidimensional arrays

Most natural phenomena can be represented in multidimen-
sional arrays once they are sampled and quantized in a computer
system. The dimensionality of an array can be flexibly set for effi-
cient information extraction and modeling. Examples of practical
array abstraction include: 1-D ordered tables or time series (t);
2-D satellite images (x/y); 3-D satellite image time series (x/y/t);
4-D multi-spectral spatio-temporal data (band/x/y/t); subsurface
hydrological data (x/y/z/t); and 5-D multi-sensor, multi-spectral
spatio-temporal data (sensor/band/x/y/t).

2.1. Potential application of multidimensional arrays in remote sensing

As a multidimensional data structure, arrays have the potential
to bring many advanced information extraction into practical use.
For example, instead of using a single spectral layer (e.g. vegetation
index), multi-spectral multi-temporal approaches (e.g. spectral-
temporal surface (Mello et al., 2013)) use more information and
thus are able to better represent the earth surface (Mello et al.,
2013). This multi-spectral multi-temporal approach can be inte-
grated with spatial information. Data can be organized as 4-D
arrays with space, time and bands as four dimensions, and algo-
rithms can be applied to them. Similar examples can be found in
data fusion (Castanedo, 2013), where data from different sensors
can be organized on two dimensions, and in spatio-temporal statis-
tical modeling. In addition, the developed spatio-temporal statisti-
cal algorithms can be flexibly applied within array partitions that
span the relevant array dimensions. This study especially demon-
strates how array data can be used in spatio-temporal change
modeling, and how an Array Data Management and Analytics Soft-
ware System (DMAS) can be used for parallelization and scaling.

2.2. Tidy data with array data structure

The open source data analysis programming language R (R Core
Team, 2015) provides rich data analysis tools. All entities R works
on are objects. A special type of object is the array. For instance, the
following code segment creates a 100� 100� 10� 5 array,
requests its dimensions, prints the length of the data vector (the
product of the dimensions), and shows the length of a one-
dimensional sub-array (vector) in the third dimension:

> a = array(NA, c(100,100,10,5))

> dim(a)

[1] 100 100 10 5

> length(a)

[1] 500000

> length(a[10,10,,1])

[1] 10

Such arrays are held in main memory, are dense, and hence do
not scale to massive data or for sparse arrays. They allow to effi-
ciently carry out functions over single dimensions (or sets of
dimensions), such as is done in remote sensing time series analysis.
Also, arrays keep no information on how dimensions or indexes
relate to time, space, or other data properties, so they require addi-
tional book-keeping.
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