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A B S T R A C T

Adaptive enrichment designs involve rules for restricting enrollment to a subset of the population during the
course of an ongoing trial. This can be used to target those who benefit from the experimental treatment. Trial
characteristics such as the accrual rate and the prognostic value of baseline variables are typically unknown
when a trial is being planned; these values are typically assumed based on information available before the trial
starts. Because of the added complexity in adaptive enrichment designs compared to standard designs, it may be
of special concern how sensitive the trial performance is to deviations from assumptions. Through simulation
studies, we evaluate the sensitivity of Type I error, power, expected sample size, and trial duration to different
design characteristics. Our simulation distributions mimic features of data from the Alzheimer's Disease
Neuroimaging Initiative cohort study, and involve two subpopulations based on a genetic marker. We investigate
the impact of the following design characteristics: the accrual rate, the time from enrollment to measurement of
a short-term outcome and the primary outcome, and the prognostic value of baseline variables and short-term
outcomes. To leverage prognostic information in baseline variables and short-term outcomes, we use a semi-
parametric, locally efficient estimator, and investigate its strengths and limitations compared to standard esti-
mators. We apply information-based monitoring, and evaluate how accurately information can be estimated in
an ongoing trial.

1. Introduction

Adaptive enrichment designs involve pre-planned rules for re-
stricting enrollment based on accrued data in an ongoing trial [1]. If,
for example, a subpopulation shows evidence of no benefit of treat-
ment, its enrollment could be stopped while the complementary sub-
population continues to be enrolled [2]. give an overview of statistical
methods for adaptive enrichment designs, including the p-value com-
bination approach [3–6]; the conditional error function approach [7];
and approaches using group sequential computations [8,9]. We use an
adaptive enrichment design from the general class of [10]; which is
based on the group sequential computation approach.

We consider trials where the primary outcome is observed a fixed
amount of time after enrollment (called the delay); we refer to such
outcomes as delayed responses. To illustrate, we use data from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort study. We
set the primary outcome to be a measure of change in severity of

dementia symptoms from baseline to 2 year of follow-up described
below; this is similar to the primary outcome in an ongoing, Phase 3
clinical trial of a drug to slow cognitive and functional decline from
early Alzheimer's Disease [11]. Also recorded are baseline variables and
the short-term outcome of change in severity of dementia symptoms
measured at 1 year of follow-up.

To leverage prognostic information in baseline variables and the
short-term outcome, we use a semiparametric, locally efficient esti-
mator (called the adjusted estimator, for conciseness) from Ref. [12].
The adjusted estimator in a randomized trial is consistent under mild
regularity conditions without requiring any parametric model as-
sumptions. It has potential to improve precision, power, expected
sample size, and trial duration when variables are sufficiently prog-
nostic for the outcome. In trials with delayed responses, the adjusted
estimator uses information from pipeline participants, i.e., enrollees
whose primary outcome has not yet been observed.

We evaluate the sensitivity of Type I error, power, expected sample
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size, and trial duration to different design characteristics through si-
mulation studies. Our simulation distributions mimic features of data
from the Alzheimer's Disease Neuroimaging Initiative, and involve two
subpopulations of interest based on a genetic marker. We investigate
the impact of the following design characteristics: the accrual rate, the
delay time of the short-term outcome and the primary outcome, and the
prognostic value of baseline variables and short-term outcomes. The
simulated trials involve multiple stages, and information-based mon-
itoring is used to determine the time of interim analyses.

We focus on adaptive enrichment designs since their added com-
plexity (compared to standard designs) may raise special concern about
how sensitive their performance is to deviations from initial assump-
tions. Since statistics from multiple populations are used in the stopping
rule and multiple testing procedure, changes to assumptions (which
affect the joint distribution of these statistics) could have impacts that
are not easy to predict a priori. This was observed, for example, when
we varied the ratio of information accrual rates in the two subpopula-
tions; in these cases the covariance structure of the test statistics is af-
fected. This sometimes resulted in higher than 80% power for certain
hypothesis tests, despite the fact that we used information-based
monitoring (which in a single population trial design would maintain
constant power at a given alternative). These results are described in
Section 5.

In Section 2 we describe the ADNI study. In Section 3 we present
notation. The simulation setup is given in Section 4. Section 5 presents
simulation results, including the impact of prognostic baseline variables
and a short-term outcome (Section 5.1), the impact of varying delay
time (Section 5.2), and the impact of varying the accrual rates (Section
5.3) on the performance of the adaptive design. In Section 6 we discuss
information accrual rates and how accurately these can be estimated in
an ongoing trial. Section 7 concludes with discussions and future re-
search directions.

2. Data example

Our simulations are based on distributions that mimic features of
the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI),
an observational longitudinal study of cognitive impairment and pro-
gression to Alzheimer's disease. The ADNI was initiated in 2003 as a
public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of the study has been to test whether
serial magnetic resonance imaging, positron emission tomography,
other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive
impairment and early Alzheimer's disease.2 The Clinical Dementia
Rating (CDR) scale is used to assess the severity of dementia symptoms
and provides both a numeric global score ranging from 0 to 3, and a
sum of boxes (SOB) score ranging from 0 to 18.

Our data come from 286 patients who entered the ADNI study with
mild cognitive impairment (CDR 0.5 with a SOB score 2.5 or less) and
who remained in the study for the full 12 months of follow-up. For
conciseness, we refer to the CDR sum of boxes score as the CDR score.
We define the primary outcome Y as the difference between the CDR
score at baseline and at 2 years. We define the short-term outcome L as
the difference between the CDR score at baseline and at 1 year. Let W
denote the following five prognostic baseline variables: CDR score at
baseline; age; Aβ42 (a type of amyloid plaque involved in Alzheimer's
disease progression); Alzheimer's Disease Association (ADA, 13 items)
scale; and the Mini Mental State Examination (MMSE) score. We con-
sider two distinct subpopulations defined by apolipoprotein E (APOE)
ɛ4 carrier status. Subpopulation 1 consists of those with no ɛ4 alleles,
and subpopulation 2 consists of those with at least one ɛ4 allele. Among
the 286 patients, 47% carry no APOE ɛ4 alleles. We consider a

hypothetical treatment whose goal is to delay the progression of dis-
ease.

3. Notation

When followed up completely, each participant i in the trial has full
data vector = S W A L YD ( , , , , )i i i i i i . We use the vector

= S W A L YD ( , , , , ) when referring to a generic participant. The vari-
able ∈S {1,2}i denotes the subpopulation that participant i belongs to;
Wi denotes a vector of baseline variables; Ai denotes the treatment as-
signment indicator; Li denotes the short-term outcome; and Yi denotes
the primary outcome. We assume that (Si,Wi,Ai) are observed when
participant i is enrolled, and that Li and Yi are observed at time dL and
dY, respectively, from the time of enrollment. Assume ≤d dL Y . Each
vector D is assumed to be an independent, identically distributed draw
from an unknown distribution Q, with the only restriction being that A
is randomized by design with equal probability of being 0 or 1, in-
dependent of S,W. The short-term outcome L can be any predefined
measurement made after randomization. No assumptions on its re-
lationship to Y are needed in order that our estimators (adjusted and
unadjusted) are consistent and asymptotically normal [13].

For a given population, the average treatment effect is defined to be
the difference between the population mean of the primary outcome
under treatment (A = 1) versus under control (A = 0). Denote the
average treatment effect in subpopulation 1, subpopulation 2, and the
combined population by Δ1, Δ2, and Δ0, respectively, where Δ0 = E(Y
|A = 1) − E(Y |A = 0) and for each subpopulation ∈s {1,2}, Δs = E(Y
|A = 1,S = s) − E(Y |A = 0,S = s). Let ps denote the proportion of
subpopulation s in the combined population, and we have Δ0 = p1Δ1 +
p2Δ2. Define the null hypotheses

≤ ≤ ≤H Δ H Δ H Δ: 0; : 0; : 0,01 1 02 2 00 0

which represent no average treatment benefit in subpopulation 1,
subpopulation 2, and the combined population, respectively.

We quantify the prognostic value of W and L for explaining variance
in the primary outcome Y for the combined population. Define the R-
squared of W and R-squared of L as

= =R E Y W
Y

R E Y L
Y

Var{ ( )}
Var( )

, Var{ ( )}
Var( )

.W L
2 2

(1)

RW
2 represents the fraction of variance in Y explained by W. RL

2 re-
presents the fraction of variance in Y explained by L.

Using the ADNI study data, we approximated (1) to roughly de-
termine how much of the variance of the outcome Y is explained by W
or L. The empirical RW

2 is computed as in (1), with E Y W( ) estimated by
a linear model with intercept and main terms W3,W4, and the variances
are estimated by the empirical variance. (We use only W3,W4 in the
working model for constructing the adjusted estimator; see Section 4.2.)
A similar computation was done to obtain the empirical RL

2. The re-
sulting values are 0.20 and 0.48 for RW

2 and RL
2, respectively, for the

combined population.
We also estimated RW

2 and RL
2 within each subpopulation, and found

the prognostic values differ by subpopulation. The corresponding em-
pirical RW

2 is 0.30 for subpopulation 1 and 0.14 for subpopulation 2; the
empirical RL

2 is 0.44 for subpopulation 1 and 0.50 for subpopulation 2.
This differential prognostic value by subpopulation impacts informa-
tion accrual and power for the adjusted estimator as described in
Section 5. In what follows, RW

2 and RL
2 refer to (1) for the combined

population.

4. Simulation setup

4.1. Overview

Our goal is to evaluate the performance of an adaptive enrichment
design with a delayed response when we vary the prognostic values in2 For up-to-date information, see www.adni-info.org.
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