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A B S T R A C T

Computational modelling of twin-screw granulation was conducted by using an artificial neural network
(ANN) approach. Various ANN configurations were considered with changing hidden layers, nodes and
activation functions to determine the optimum model for the prediction of the process. The neural
networks were trained using experimental data obtained for granulation of pure microcrystalline
cellulose using a 12 mm twin-screw extruder. The experimental data were obtained for various liquid
binder (water) to solid ratios, screw speeds, material throughputs, and screw configurations. The
granulate particle size distribution, represented by d-values (d10, d50, d90) were considered the
response in the experiments and the ANN model. Linear and non-linear activation functions were taken
into account in the simulations and more accurate results were obtained for non-linear function in terms
of prediction. Moreover, 2 hidden layers with 2 nodes per layer and 3-Fold cross-validation method gave
the most accurate simulation. The results revealed that the developed ANN model is capable of predicting
granule size distribution in high-shear twin-screw granulation with a high accuracy in different
conditions, and can be used for implementation of model predictive control in continuous
pharmaceutical manufacturing.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The development of continuous pharmaceutical manufacturing
has been a subject of great interest for the pharmaceutical
industry. Currently, manufacturing of solid-dosage pharmaceutical
formulations are carried out in batch-wise operation. In batch-
mode processing, each run that does not meet the requirements is
rejected which results in time and cost deficits for the
manufacturing of pharmaceutical compounds. Continuous phar-
maceutical processing can overcome this drawback and therefore
offer more advantages compared to batch processing. In order to
develop continuous pharmaceutical manufacturing, each unit
operation in the manufacturing line should be inter-connected in
an appropriate way (Lee et al., 2015).

A powerful tool for development of continuous pharmaceutical
manufacturing is model predictive control (MPC), which is

considered as an advanced control strategy. MPC considers each
unit operation and takes a holistic view of the manufacturing line.
Therefore, each unit operation should be specified and its model
needs to be developed to implement MPC for the manufacturing
line. There are different processes in the manufacturing of solid-
dosage drugs such as milling, mixing, granulation, drying, and
coating. Granulation is the key step in manufacturing pharmaceu-
tical formulations, in which granules are produced from a fine
powder including an active pharmaceutical ingredient (API) and an
excipient. Moreover, wet granulation is the most complex unit
operation in pharmaceutical manufacturing since many
mechanisms are involved in the formation of granules from fine
powder (Rogers et al., 2013). Recently, twin-screw granulation has
gained a lot of attention over other granulation methods due to its
unique characteristics. The main advantage of twin-screw
granulation is that it is an intrinsic continuous process which
can promote development of continuous pharmaceutical
manufacturing (Seem et al., 2015). Other advantages of twin-
screw extruder in the pharmaceutical sector are its ability to mix
and react the feed materials, and its short residence time.

In order to implement MPC approach for continuous
manufacturing, a model of each process step is required which
can be done by mathematical or computational modelling. There
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are different approaches for mathematical modelling of granula-
tion process including; population balance model (PBM), discrete
element method (DEM), and hybrid models. In hybrid models, both
PBM and DEM models are used to benefit the advantages of both
methods in modelling of granulation. For PBM, the changes of
granule properties such as size distribution are calculated.
However, DEM tracks the motion of each individual particle along
the space, this is based on Newton’s second law (Rogers et al.,
2013). Given that particle size is an important product character-
istic, these models primarily focus on predicting the particle size
distribution in granulation. However, in wet granulation the liquid
content and porosity are also very important for subsequent
processes, such as tabletting.

Some theoretical and experimental work using twin-screw
extruder has been carried out to simulate continuous wet
granulation. Several researchers have investigated predictive
modelling of wet granulation by using PBM and DEM modelling.
Barrasso et al. (Barrasso et al., 2015) developed a multi-
dimensional population balance model for the prediction of
granule properties in a twin-screw granulation. Lumped-parame-
ter and compartment approach were used for the numerical
solution of population balance equations. This model was able to

predict the granule size, liquid content, and porosity as a function
of process parameters.

Subsequently, Barrasso et al. (Barrasso et al., 2015 Barrasso and
Ramachandran, 2015) utilized the DEM approach for the estima-
tion of aggregation kernel in solution of population balance model.
The results showed a better prediction of particle size distribution
compared to semi-empirical aggregation kernel.

The results of mechanistic models developed for twin-screw
granulation revealed that these mechanistic models are quite slow
for the use of MPC in the development of continuous pharmaceu-
tical manufacturing. However, these mechanistic models can be
used for the process design and optimization (Barrasso et al., 2015;
Kumar et al., 2013, 2015).

The main disadvantage of aforementioned mechanistic models
is that it is not fast enough to be used as a model for the
development of MPC approach in continuous manufacturing. In
MPC, the model of process should be able to run within a few
seconds in order to predict the future behaviour of the process.
Therefore, these mechanistic models fail to be applied for MPC, and
in fact faster models are required for industrial applications.
Recently, some researchers have tried to reduce the solution time
for mechanistic model by utilizing ANN. Barrasso et al. (Barrasso
et al., 2014) developed a hybrid model by coupling PBM and
artificial neural network (ANN) for describing wet granulation. The
main aim of a hybrid model is to make the solution time faster. The
results showed that ANN is capable of simulation for wet
granulation process, although it does not look at the mechanisms
associated with the granulation. A list of different mechanistic and
hybrids models applicable to wet granulation are reported by
Kumar et al. (Kumar et al., 2013; Rogers et al., 2013).

Data-driven models have proved to be robust and efficient for
the application of simulation and prediction of pharmaceutical
processes. An important class of data-driven models is artificial
neural network (ANN) which is powerful in process prediction
(Kazemi et al., 2016; Puri et al., 2016). ANN is usually used for
modelling of complex processes in which mechanistic models fail
to predict the process or are computationally expensive.

ANN has been used for predication of some pharmaceutical
processes such as milling. Kazemi et al. (Kazemi et al., 2016)

Nomenclature

d D-value of particle size distribution (micron)
f Predicted value
L/S Liquid to solid ratio
K Number of experimental subsets for ANN validation
n Number of experiments
R2 Coefficient of determination
x Linear combination of input factors
y Measured value

Subscript
i Experiment set

Table 1
Design of experiments for ANN simulation of wet granulation.

Run L/S Screw speed (rpm) Powder flow rate (g/h) Screw configuration d10 (Micron) d50 (Micron) d90 (Micron)

1 0.54 64 49.75 2 kneading zones 15.07 88.535 328.8
2 0.94 200 98 2 kneading zones 151.35 417.2 1004.15
3 1.22 86 98.2 2 kneading zones 357.35 759.9 1202
4 0.54 200 69.33 2 kneading zones 23.885 130.2 360.3
5 1.22 200 61.47 2 kneading zones 307.15 689.95 1038.7
6 1.22 50 82 2 kneading zones 445.65 767 1105
7 1.21 200 49.4 1 kneading zone 385.75 1008.2 1303
8 0.78 200 49.75 1 kneading zone 65.195 271.6 653.5
9 1.21 115 49.5 1 kneading zone 455.15 1052.65 1313.5
10 0.49 185 67.55 1 kneading zone 14.605 67.46 342
11 0.65 50 97.6 1 kneading zone 10.57 76.865 342.6
12 0.52 50 97.05 1 kneading zone 8.33 35.805 300.5
13 1.22 50 82 1 kneading zone 177.5 440.55 831.8
14 0.55 200 98.6 conveying elements only 25.06 113.25 291.35
15 1.22 200 98.15 conveying elements only 332.55 860.65 1250
16 0.76 200 99.2 conveying elements only 66.91 241.2 641.45
17 0.59 85 51 conveying elements only 35.02 164.7 384.45
18 1.12 72 53.25 conveying elements only 186.775 367.975 820.125
19 0.48 50 49.8 conveying elements only 18.42 102.745 341.2
20 0.50 200 95.05 2 kneading zones with cutting elements 7.585 22.425 113.75
21 1.20 58 82 2 kneading zones with cutting elements 330.7 865.6 1273.5
22 0.66 200 49.65 2 kneading zones with cutting elements 35.605 188 490.7
23 0.54 50 61.45 2 kneading zones with cutting elements 14.875 87.55 342.7
24 1.22 200 97.38 2 kneading zones with cutting elements 325.4 763 1154
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