

Available online at

**ScienceDirect** 

www.sciencedirect.com

Elsevier Masson France



EM consulte www.em-consulte.com/en

The rate of mortality and morbidity among cancer patients is at an alarming rate and its ratio of incidence

is increasing as a result of its effects of metastasis and recurrence in its patients. Several factors including

anesthetic agents and analgesia techniques have been identified as causative agents for cancer metastasis. In this mini-review, we will summarize some of the available effects of anesthetic and

analgesic techniques on cancer metastasis as derived from experimental cell culture and live animal data

## Review

# Effects of anesthetic and analgesic techniques on cancer metastasis

and also form clinical studies.



© 2016 Published by Elsevier Masson SAS.

# Sepideh Vahabi<sup>a,c,\*</sup>, Ali Eatemadi<sup>b,c</sup>

<sup>a</sup> Department of Anesthesiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran

<sup>b</sup> Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran

<sup>c</sup> Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

### ARTICLE INFO

## ABSTRACT

Article history: Received 6 October 2016 Received in revised form 11 December 2016 Accepted 19 December 2016

Keywords: Anesthesia Metastases Recurrence Cancer Analgesic techniques

#### Contents

| 1. | ntroduction                                                                              | 1 |  |  |  |
|----|------------------------------------------------------------------------------------------|---|--|--|--|
|    | 1.1. Local anesthetics and regional anesthesia                                           |   |  |  |  |
|    | 1.1.1. Potential targets for metastasis inhibition by the anesthesiologist               | 5 |  |  |  |
|    | I.2. Opioids                                                                             |   |  |  |  |
|    | I.3. Anesthetics drugs effect on cancer cell biology                                     | 5 |  |  |  |
|    | 1.4. Clinical proof of an association between cancer recurrence and regional anaesthesia | 5 |  |  |  |
| 2. | Conclusion                                                                               |   |  |  |  |
|    | References                                                                               | 5 |  |  |  |

#### 1. Introduction

The mortality and morbidityrate of cancer continues to increase and thereby making it a difficult challenge in treating and managing cancer patients [1]. Presently the only available treatment for cancer tumour patients is surgical resection to remove the primary tumour; but it comes without a consequence, metastatic recurrence. Several reports have suggested that several perioperative factors can directly stimulate both cancer cells and cell mediated type of immunity and as such leading to spreading of metastatic tumour [2,3] (Table 1).

The mechanism of metastasis is marked by the separation of cells that shows metastatic properties from the primary tumour

E-mail address: S.Vahabi2020@gmail.com (S. Vahabi).

and its completion is demonstrated by formation of tumour within a close or usually a distant organ [4,5]. It should be noted that the spreading of a tumour depends majorly on the formation of new blood vessels (angiogenesis) and aggressive attack of the immune system of the host. As described by Fidler, single cell undergoing uncontrollable multiple cycles of cell division and mutation results into a tumour cell [6] that are non-responsive to biological cell signaling that mediates and control normal cell division thereby resulting into uncontrollable tumour growth [7]. Wide-ranging angiogenesis processes are developed in other for a tumour to thrive in terms of growth. However the angiogenesis process is stimulated by the release of, vascular endothelial growth factor (VEGF) and prostaglandin E2 from the evolving tumour [8]. After angiogenesis has been established, metastatic cell separates from the tumour's origin and migrate to neighboring cells [9]. It should be noted that a benign carcinoma tumour transform into a malignant tumour at the onset of the invasion of the basement

<sup>\*</sup> Corresponding author at: Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, 6997118544, Iran.

## Table 1

Influence of perioperative factors on cancer recurrence and metastasis.

| Surgery                      | Increases neuroendocrine and cytokine stress response                                                                 |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                              | Incapacitate cell-mediated immunity [10]                                                                              |
|                              | Stimulates tumour growth and metastasis in animal models                                                              |
| Volatile anaesthesia         | Suppresses the immune activity of leucocytes [11]                                                                     |
|                              | Connected with induction of apoptosis in lymphocytes in vitro                                                         |
| Opioids                      | Suppresses cell-mediated and humoral immunity [12]                                                                    |
|                              | Promote tumour cell migration [13], proliferation, and cancer gene expression in human cells in vitro                 |
|                              | Facilitate angiogenesis                                                                                               |
| Propofol                     | Decreases cancer cell migration, proliferation, and metastasis in vitro                                               |
|                              | Possible COX inhibitor                                                                                                |
| Pain                         | NK cell activity was suppressed as reported in animal studies that pain was ineffectively treated postoperative [14]. |
| NSAIDs/COX inhibitors        | PGs inhibit NK cell cytotoxicity and modulate the tumour microenvironment                                             |
|                              | Long-term use associated with reduced incidence of cancer [15]                                                        |
| Hypothermia                  | Stimulates sympathetic nervous system and glucocorticoid release [16]                                                 |
|                              | Increases bleeding and allogeneic blood transfusion                                                                   |
|                              | Suppresses cell-mediated and humoral immunity [17]                                                                    |
| Psychological stress         | Animal and clinical evidence of an association between stress, depression, and cancer progression                     |
|                              | Activates HPA-axis and sympathetic nervous system                                                                     |
|                              | Contributes to perioperative immunosuppression [18]                                                                   |
| Allogeneic blood transfusion | Associated with immunosuppression, increased risk of cancer recurrence, and reduced survival                          |

#### Table 2

Anesthetic Agents.

| Drug          | Туре                      | Importance                                                                                             |
|---------------|---------------------------|--------------------------------------------------------------------------------------------------------|
| Halothane     | Inhalational, halogenated | Upkeep of anesthesia                                                                                   |
| Isoflurane    | Inhalational, halogenated | Upkeep of anesthesia                                                                                   |
| Sevoflurane   | Inhalational, halogenated | Upkeep of anesthesia                                                                                   |
| Propofol      | Intravenous Induction.    | Can also be used as continuous infusion for maintenance.                                               |
| Thiopentone   | Intravenous, barbiturate  | Initiation of anesthesia.                                                                              |
| Lidocaine     | Local (short acting)      | Infiltration can be used for simple procedures and postoperative pain relief                           |
| Bupivicaine   | Local (long acting)       | Used in regional techniques (spinal, epidural) for intra- and postoperative analgesia and anesthesia   |
| Xenon         | Inhalational, noble gas   | Upkeep of anesthesia, not widely used clinically due to expense                                        |
| Nitrous oxide | Inhalational              | Adjunct to general anesthesia, reduces need for other inhalational agents; useful analgesic properties |

membrane and also invades the systemic circulation of the host cells via the lymphatic systems.

#### 1.1. Local anesthetics and regional anesthesia

Some researchers have reported in their clinical studies of a connected link that exist between the use of regional anesthesia and decreased cancer metastasis [19]. However with these clinical studies, report has also emerged about the use of regional anesthetic techniques leading to lack of the stress response activation in cancer patients. Piegeler and co-worker reported and

proposed that the prevalence of cancer recurrence is as such decreased by local anesthetic agents (Table 2) via anti-inflammatory action and a direct effects on the proliferation and migration of cancer cells [20]. In addition Martinsson reported that lidocaine and ropivacaine have been demonstrated to be effective on cancer cells when cultured in-vitro as an s anti-proliferative agent [21]. Sakaguchi also corroborated the effectiveness of lidocaine in his report, that lidocaine was demonstrated to suppress cancer cell proliferation through direct inhibitory action on some specific growth factor receptor responsible for proliferation and differentiation of epithelial cells and tumours of epithelial cell origin [22].

#### Table 3

Ongoing research investigating the effects of anesthetic agents on immune cell function and metastasis.

| Cancer type                | Area of investigation                                                            | NCT number | Principal investigator |
|----------------------------|----------------------------------------------------------------------------------|------------|------------------------|
| Breast cancer              | TIVA vs inhalational anesthesia                                                  | 2089178    | Коо                    |
| Breast cancer              | Propofol sedation with local infiltration vs general anesthesia with sevoflurane | 00938171   | Chang                  |
| Breast cancer              | Regional plus TIVA vs general anesthesia + opioids                               | 418457     | Buggy                  |
| Breast cancer              | TIVA vs inhalational anesthesia                                                  | 2005770    | Beck Schimmer          |
| Pancreatic Cancer          | TIVA vs inhalational anesthesia                                                  | 2335151    | Beck Schimmer          |
| Colon/Rectal/Breast cancer | TIVA vs sevoflurane-maintained anesthesia                                        | 01975064   | Bergkvist              |
| Malignant melanoma         | Regional vs general anesthesia                                                   | 1588847    | Van Aken               |
| Colon cancer               | Regional vs general anesthesia                                                   | 684229     | Reytman                |
| Colon cancer               | Regional vs general anesthesia                                                   | 2326727    | Kurz                   |
| Colon cancer               | Perioperative analgesia with morphine PCA vs epidural                            | 2314871    | Berta                  |
| Colon cancer               | Epidural anesthesia vs no epidural anesthesia                                    | 2326727    | Reytman                |
| Tongue Cancer              | TIVA vs combined intravenous-inhalational anesthesia vs inhalational anesthesia  | 1854021    | Zhang                  |
| Breast cancer              | Peritumoral local anesthesia vs no peritumoral local anesthesia                  | 1916317    | Badwe                  |

NCT = ClinicalTrials.gov clinical trial number; PCA = patient-controlled analgesia; TIVA = total intravenous anesthesia.

Download English Version:

# https://daneshyari.com/en/article/5553412

Download Persian Version:

https://daneshyari.com/article/5553412

Daneshyari.com