

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/jbmt

CASE REPORT

Lumbar scoliosis: Reducing lower back pain and improving function in adulthood. A case report with a 2-year follow-up

Bodywork and

Movement Therapies

Massimiliano Polastri, MSc, PT^{a,*}, Michele Romano, PT^b

^a Medical Department of Continuity of Care and Disability, Physical Medicine and Rehabilitation, University Hospital St. Orsola-Malpighi, Bologna, Italy ^b ISICO (Italian Scientific Spine Institute), Milan, Italy

Received 19 March 2016; received in revised form 9 May 2016; accepted 25 May 2016

KEYWORDS

Braces; Low back pain; Outcome assessment; Rehabilitation; Scoliosis; Case report **Summary** *Background:* Lower back pain (LBP) can persist into adulthood as a sequelae of adolescent lumbar scoliosis, particularly under certain conditions influenced by aspects of bodily biomechanics and/or other factors. Here we describe the use of tailored bracing used in an adult with pre-existing lumbar scoliosis suffering from LBP.

Case description: A 40-year-old female presented with acute LBP. The subject complained of acute lumbar pain exacerbated when she was upright, and when she was engaged in the normal activities of daily life. At the time of the first observation, the patient was wearing a brace that was readily available commercially. We modified the non-individualized elastic brace that the patient had already purchased. Major improvements were observed in either or both of the Quebec Back Pain Disability Scale and Numerical Pain Rating Scale scores.

Conclusion: We speculate that the tailored bracing described in the present case may be a viable option in carefully selected cases.

© 2016 Elsevier Ltd. All rights reserved.

* Corresponding author. Medical Department of Continuity of Care and Disability, Physical Medicine and Rehabilitation, University Hospital St. Orsola-Malpighi, Via G. Massarenti 9, Bologna, 40138, Italy. Tel.: +39 051 214 3485; fax: +39 051 082 2185.

E-mail addresses: gbptap1@gmail.com (M. Polastri), michele. romano@isico.it (M. Romano).

http://dx.doi.org/10.1016/j.jbmt.2016.05.004 1360-8592/© 2016 Elsevier Ltd. All rights reserved.

Introduction

Lower back pain (LBP) can persist into adulthood as a sequelae of adolescent lumbar scoliosis, particularly under certain conditions influenced by aspects of bodily biomechanics and/or other factors. All pre-existing scoliosis; postural alteration; muscular imbalance; emotional factors; the need to spend long periods in awkward positions when engaged in professional work; and/or the absence of, or reduction in physical activity, can contribute to the worsening of scoliosis symptoms in adulthood. On the other hand, adolescent idiopathic scoliosis can usually be treated by appropriate bracing and exercise (Romano et al., 2013: Lusini et al., 2014; Fusco et al., 2011). LBP that worsens in an adult, accompanied by lumbar scoliosis, should be evaluated with consideration of certain issues that are not typically addressed in patients without lumbar spinal curve deformities. In fact, physical examination of an adult who complains of acute back pain may reveal a herniated disc, especially when the patient complains of radiculopathy. In adults, radicular pain in the absence of a spinal deformity is typically controllable (or at least reducible) by application of pharmacological and/or physiotherapeutic treatment. However, in patients with lumbar scoliosis, the symptoms may be more aggressive and less responsive to the abovementioned conservative treatments.

Bracing is a viable therapeutic option for adult scoliotic patients with chronic LBP (Weiss and Werkmann, 2009). In such patients, the pain may be caused by deformities triggered by lumbar scoliosis at points peripheral to the pivot of the curve, including the shoulder and pelvic girdles. To date, several treatments have been used to treat lumbar and/or radicular pain including drugs, exercise, physical therapies, manual therapies, and a wait-and-see approach. For writing this case report we followed the CARE criteria (Gagnier et al., 2014). The principal purpose of this study was to describe the use of tailored bracing to reduce pain and improve function in an adult patient with pre-existing lumbar scoliosis suffering from LBP.

Methods

Case description

A 40-year-old female with a body mass index (BMI) of 18.4 kg/m² presented with acute LBP. The subject complained of acute lumbar pain exacerbated when she was upright, and when she was engaged in the normal activities of daily life. The patient remarked that the problem had recently become worse. In addition a previously initial pharmacological treatment with non-steroidal anti-inflammatory drugs, had not effect on pain intensity. In fact, at the first evaluation, she was asked to describe symptom's intensity using a 0-10 numerical pain rating scale (NPRS) where 0 represented the absence of pain and 10 the maximum pain perceived (Childs et al., 2005); the answer was 8.5. Furthermore, the Quebec Back Pain Disability Scale (QBPDS), which consists of 20 items yielding a total score of 0-100, was also used to quantify the functional limitation (Kopec et al., 1995, 1996); QBPDS score was 43. Major complaints (answers: "very difficult") were putting on socks, bending over to clean the bathtub, and lifting and carrying a heavy suitcase. Additional complications (answer: "fairly difficult") were getting out of bed, maintaining a sitting position for a long time, making the bed, moving a chair, pulling or pushing heavy doors, and carrying bags or groceries. Conversely, turning in bed, riding in a car, climbing a flight of stairs, or walking were not at all difficult. X-ray examination confirmed the presence of preexisting left lumbar scoliosis (22° Cobb) with the apex at vertebra L_1 and vertebral apex torsion of 16° on the horizontal plan (Fig. 1A, B). The intervertebral body spaces were conserved in the lumbar tract, but their amplitudes were reduced in the dorsal tract (Fig. 1C). Palpation of the paravertebral muscles triggered pain in the lower dorsal tract. In addition, legs length measuring (anterior superior iliac spine to the internal malleolus in a supine position) did not highlighted any discrepancy: 89 cm for both limbs. In the present case, the initial evaluation did not included additional screening tests such as the Adam's forward bend test which has been recognized as a suitable evaluation tool, for the diagnosis of adolescent idiopathic scoliosis, in order to decide if patients need further X-ray examination (Horne et al., 2014). The case reported in this study described an adult subject; we were more oriented to confirming the diagnosis by X-ray examination.

Thus, the initial evaluation suggested that the patient was suffering from LBP caused by pre-existing structural scoliosis, so we thought it appropriate to address the scoliotic curve. Major concern in this case was the pain intensity which could make it difficult to treat. At the time of the first observation, the patient was wearing a brace that was readily available commercially. Thus, we sought to tailor the brace to the patient.

Intervention and outcome

We modified the non-individualized elastic brace that the patient had already purchased, and we modified the orthosis, via simple application of an elastic band, to form a typical (easily removable) elastic orthosis. The objective was to create a coronal shifting force in the direction of the concavity of the curve to modify the positions of the vertebrae affected by scoliosis. The elastic band ran downward to take advantage of the anchorage afforded by a stable structure such as the iliac wings of the pelvis (Fig. 2A, B). The midpoint of the elastic band was fixed with Velcro at the apex of the curve, on the side of the convexity. The two final portions were tensioned and fixed, using Velcro, to run from the side of the concavity of the scoliosis curve to the lower portion of the elastic brace (Fig. 2B). These therapeutic measures commenced 30 days after symptom onset (Fig. 3). The patient was informed of the nature of the study and gave her consent.

At 1 month after initiation of treatment (application of the customized brace) the subject was asked to describe her pain intensity and functional status; the NPRS and QBPDS scores were 2 and 15, respectively. The putting on of socks was "somewhat difficult"; and bending over to clean the bathtub, and lifting and carrying a heavy suitcase, were "minimally difficult". She was re-evaluated at 5, 7, 9, 12, and 24 months (Fig. 4). The patient came into pregnancy during the treatment timeframe (Figs. 3 and 4). In this regard, it should not be forgot that pregnancy have potentially altered the center of gravity and, consequently the nature of pain during this period. Major improvements were observed in the first 6 months, in either or both of the QBPDS and NPRS scores, and the improvements were still evident at the last follow-up. Both the QBPDS and NPRS scores improved compared to baseline, particularly in

Download English Version:

https://daneshyari.com/en/article/5563975

Download Persian Version:

https://daneshyari.com/article/5563975

Daneshyari.com