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a  b  s  t  r  a  c  t

The  conventional  Kalman  filter  assumes  a constant  process  noise  covariance  according  to the  system’s
dynamics.  However,  in practice,  the  dynamics  might  alter  and  the  initial  model  for  the  process  noise  may
not  be  adequate  to adapt  to abrupt  dynamics  of the system.  In  this  paper,  we  provide  a  novel  informed
Kalman  filter  (IKF)  which  is  informed  by an  extrinsic  data  channel  carrying  information  about  the system’s
future  state.  Thus,  each  state  can be represented  with  a corresponding  process  noise  covariance,  i.e.  the
Kalman  gain  is automatically  adjusted  according  to the  detected  state. As a  real-world  application,  we
demonstrate  for  the  first  time  how  the analysis  of  electroencephalogram  (EEG)  can  be used  to  predict  the
voluntary body  movement  and  inform  the tracking  Kalman  algorithm  about  a  possible  state  transition.
Furthermore,  we  provide  a  rigorous  analysis  to establish  a relationship  between  the  Kalman  performance
and  the  detection  accuracy.  Simulations  on both  synthetic  and  real-world  data  support  our analysis.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Kalman filtering (KF) is a popular state estimation technique
which has found a wide range of applications in science and
technology. It provides optimal error correction for noisy and inac-
curately modelled random processes through a recursive algorithm
which accumulates information regarding the process characteris-
tics. Recently, the Kalman algorithm has been formulated in the
quaternion domain representation to track in three-dimensional
spaces [1–3].

The Kalman algorithm requires prior knowledge of the system
such as the system model, its initial conditions and the noise charac-
teristics to provide a robust performance. The conventional Kalman
filter algorithm considers processes where the noise characteristics
or the system dynamics remain stationary [2,4]. However, those
characteristics may  change in their structure and behaviour, such
as random system failures, environmental disturbances and abrupt
variation of the operating point [5]. Thus, the conventional Kalman
filter may  not be able to capture those changes resulting in subopti-
mal  performance. For instance, consider a motion tracking system
where there are periods in which the motion dynamics are of either
low or high variance. In this case, a stationary process noise model
is not optimal [5,6].

The performance of the Kalman filter depends on the Kalman
gain, a parameter which provides a tradeoff between the actual
observations and the model predictions. The Kalman gain is
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computed based on the noise characteristics and determines the
performance of the KF. In a motion tracking system, a Kalman gain
can be tuned to achieve noise reduction behaviour by assuming a
low value and responsiveness by assuming a large value. Since the
Kalman gain is directly affected by the process noise covariance,
the correct estimation of this matrix can significantly enhance the
robustness and reliability of the KF.

These problems have been addressed in [6], where a state-based
gain adaptation algorithm was  developed in which the Kalman gain
depended on the observed measurements. However, in practice,
online identification of the transition point is very challenging,
especially when the data contain high level of noise. In this work,
we propose an informed Kalman filter (IKF) algorithm where the
Kalman gain is automatically updated based on an extrinsic data
channel which provides information about the state of the system.
Thus, optimal behaviour can be established for systems exhibiting
non-stationary changes in the system model, its dynamics and in
the noise behaviour. The external data channel operates as a pre-
dictor of the future evolution of the system’s parameters and its
prediction accuracy is critical for the IKF efficacy.

We demonstrate a practical application of the IKF algo-
rithm by considering motion tracking of human arm movements
and the extrinsic data channel corresponds to concurrent elec-
troencephalography (EEG) measurements. An early indication of
volitional movement is the pre-motor or readiness potential (RP),
which appears about 0.5–1.5 s prior to the initiation of voluntary
movement [7–10].

The RP is known as part of the slow-wave motion related cortical
potential (MRCP) which is related to the movement planning and
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Fig. 1. The obtained readiness potential for a healthy subject. The RP wave is in
agreement with literature [7].

execution. The RP wave is represented as a slow decrease in EEG
amplitude starting about 1.5 s prior to the movement onset [7,8]
where the decreasing rate reaches a steep slope about 0.4 s before
the movement, see Fig. 1.

Thus, we aim to detect the online RP prior to motion execution
and impart it to the proposed IKF as the system change predic-
tor. Note that online detection of the RP wave from single-trials
has always been a challenge due to the poor signal to noise ratio
(SNR) of the EEG [10]. Furthermore, the onset and appearance of the
RP wave can differ among participants and movement conditions.
This is due to several factors such as level of intention, preparatory
state, speed and precision of movement, pace of movement repeti-
tion, complexity of movement, and pathological lesions of various
brain structures [8]. In this work, we provided a uniform prepara-
tion state for subjects and they were asked to perform a similar
arm movement. The RP wave was detected using an individual
template-matching algorithm.

The design of the IKF in this work employs a quaternion rep-
resentation for the motion tracking data but the same principles
apply for real or complex data.

2. Methodology

Recently, Kalman filtering has been formulated within the
quaternion domain to address 3-D altitude estimation problems
[1]. Similar to the conventional KF, the quaternion KF is a recursive
algorithm that consists of two major steps, prediction and update.
The KF behaviour is often discussed in terms of K0 or Kalman
gain, a correction factor for state estimation, which is affected by
both process noise (Q) and measurement noise (R) matrices. Thus,
optimising the system to have reasonable values for covariance
matrices Q and R is required for optimal performance.

2.1. EEG informed Kalman gain

In this section, we introduce an informed Kalman algorithm in
which the Kalman gain is adjusted according to the state of the sys-
tem. Consider the system Sr which represents a random mixture of
low and high variance dynamics represented by two  process noise
covariances Q1 and Q2 respectively. For this system, Q2 is preferred
when noise reduction is the main objective, while Q1 is applied
for higher responsiveness of the KF to abrupt changes. Thus, we
propose the IKF in which the combined gain leverages both of
these performance advantages according to the state of the data.
The gain is derived from K1 and K2, thereby taking into account the
noise statistics Q1 and Q2, and a regularisation parameter  ̨ which
reflects the state variance. In other words,  ̨ is defined such that
K2 is the principal gain for low variance movements to denoise
the data, while K1 is the primary gain for high variances, such

Fig. 2. Illustration of Kalman error vs. SNR for two  different noise covariance matri-
ces, where Q1 (dotted line) > Q2 (solid line).

as occurrence of sudden changes, to compensate for the delayed
response. The derivation of the novel Kalman gain in terms of the
system characteristics is included in Appendix A.

In practice, online identification of the transition point is chal-
lenging, especially when the data contain high level of noise.
Therefore, we assume that this instant is highly correlated with a
known distinct feature in an extramural channel, such as RP wave
in EEG before the movement execution. Thus, rather than the actual
data, we  exploit an extrinsic EEG channel (x) to inform the KF for
state recognition and gain adaptation. The IKF1 is summarised in
Algorithm 1.

Algorithm 1. Informed Kalman filter
Initialisation of the Kalman variables
Kalman state prediction
q̃p(t + 1) = Fq̃u(t)
Ppi

(t + 1) = FPui
(t)FT + Qi i ∈ {1, 2}

K = ˛K1 + (1 − ˛)K2 where Ki = Ppi
(t + 1)HT (HPpi

(t + 1)HT + R)
−1

i ∈ {1, 2}
Kalman update
q̃u(t + 1) = q̃p(t + 1) + K(qos − Hq̃p(t + 1))
Pui

(t + 1) = (I − KH)Ppi
(t + 1) i ∈ {1, 2}

Note that 0 ≤  ̨ ≤ 1 is the regularisation factor. On one hand,
 ̨ = 1 provides maximum convergence and highest responsiveness,

on the other hand  ̨ = 0 is optimal for the low-variance state; and
therefore  ̨ > 0 models the transient state. In this work, the value of

 ̨ is affected by detection of the RP which is achieved via a template
matching obtained from the training EEG data.

3. IKF performance analysis

To analyse the performance of proposed IKF against noise,
assume that for the system Sr, both Q covariance matrices are diag-
onal where Q1 > Q2. Theoretically, for small SNR, e.g. region (a) in
Fig. 2, the noise reduction is more crucial than responsiveness and
small Kalman gain leads to a lower error or E2. On the other hand,
for high SNR, region (b) in Fig. 2, noise is less dominant and quick
adaptation of the Kalman algorithm is desired. Thus, the error of
high Kalman gain or E1 is smaller.

Using the proposed IKF, the objective is to leverage both of
these performance advantages regardless of SNR, such that the per-
formance shifts towards the optimal case. However in practice,
the exterior predictor channel is noisy and this affects the state
detection and consequently the IKF behaviour. Therefore, the IKF
performance should be also examined in terms of detection accu-
racy of events in the predictor channel (EEG). For statistical analysis,
a most common index of the accuracy is associated with a receiver
operating characteristic (ROC) curve. This curve is acquired by plot-
ting the true positive rate (TPR) versus false positive rate (FPR) for
various detection thresholds [7]. In general, the final threshold is

1 Throughout this paper, H represents the observation model to map  the state
space into the observed space, and F is a matrix of state model to illustrate the
system’s dynamic. The q̃p and q̃u are the priori (predict) and posteriori (update)
states respectively and qos is the observed state.
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