
Web Semantics: Science, Services and Agents on the World Wide Web 33 (2015) 30–49

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Optimising resolution-based rewriting algorithms for OWL
ontologies✩

Despoina Trivela ∗, Giorgos Stoilos, Alexandros Chortaras, Giorgos Stamou
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

a r t i c l e i n f o

Article history:
Received 30 September 2013
Received in revised form
1 December 2014
Accepted 17 February 2015
Available online 26 February 2015

Keywords:
Query answering
Query rewriting
Ontology
Description logics
Resolution

a b s t r a c t

An important approach to query answering over OWL ontologies is via rewriting the input ontology (and
query) into a new set of axioms that are expressed in logics forwhich scalable query answering algorithms
exist. This approach has been studied for many important fragments of OWL like S HI Q, Horn-S HI Q,
OWL 2 QL, and OWL 2 EL. An important family of rewriting algorithms is the family of resolution-based
algorithms, mostly because of their ability to adapt to any ontology language (such algorithms have been
proposed for all aforementioned logics) and the long years of research in resolution theorem-proving.
However, this generality comes with performance prices and many approaches that implement algo-
rithms that are tailor-made to a specific language are more efficient than the (usually) general-purposed
resolution-based ones.

In the current paperwe revisit and refine the resolution approaches in order to design efficient rewrit-
ing algorithms for many important fragments of OWL. First, we present an algorithm for the language
DL-LiteR,⊓ which is strongly related to OWL 2 QL. Our calculus is optimised in such a way that it avoids
performingmany unnecessary inferences, one of themain problems of typical resolution algorithms. Sub-
sequently, we extend the algorithm to the language E LHI which is strongly related to OWL 2 EL. This is
a difficult task as E LHI is a relatively expressive language, however, we show that the calculus for DL-
LiteR,⊓ requires small extensions. Finally, we have implemented all algorithms and have conducted an
extensive experimental evaluation using many well-known large and complex OWL ontologies. On the
one hand, this is the first evaluation of rewriting algorithms of this magnitude, while, on the other hand,
our results show that our system is in many cases several orders of magnitude faster than the existing
systems even though it uses an additional backwards subsumption checking step.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Efficient management and querying of large amounts of (pos-
sibly distributed) data that are formally described using complex
structures like ontologies is an important problem for many mod-
ern applications [1–3]. In such settings answers to user queries re-
flect both the stored data as well as the axioms that have been
encoded in the ontology. However, query answering over OWL
ontologies is a very challenging task mainly due to its very high
computational complexity [4–6]. Even after intense implementa-
tion work and the design of modern sophisticated optimisations,

✩ This is a revised and extended version of the work presented in Chortaras
(2011), and Trivela (2013).
∗ Corresponding author.

E-mail addresses: despoina@image.ntua.gr (D. Trivela),
gstoil@image.ece.ntua.gr (G. Stoilos), achort@cs.ntua.gr (A. Chortaras),
gstam@cs.ntua.gr (G. Stamou).

direct (tableaux-based) approaches integrated in systems such as
HermiT [7], Pellet [8], and Racer [9] are not yet able to cope with
very large datasets. Moreover, in several important profiles of OWL
2 [10], like OWL 2 QL and OWL 2 EL, different methods for query
answering have been investigated.

A prominent (indirect) approach to query answering over OWL
ontologies is via rewriting the input into axioms expressed in
formalisms for which efficient data management and retrieval
systems are already available. More precisely, the input ontology
O and query Q are transformed into a set of sentences R, typically
a datalog program (or in some cases even a union of conjunctive
queries) called rewriting, such that for any dataset D the answers
to Q w.r.t. D and O coincide with the answers to Q w.r.t. D and R
discarding O [11–13]. Since R is a (disjunctive) datalog program
query answering can be delegated to existing scalable (deductive)
database systems.

Computing rewritings has been studied for various fragments
of OWL. One of the first approaches supported the language

http://dx.doi.org/10.1016/j.websem.2015.02.001
1570-8268/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.websem.2015.02.001
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2015.02.001&domain=pdf
mailto:despoina@image.ntua.gr
mailto:gstoil@image.ece.ntua.gr
mailto:achort@cs.ntua.gr
mailto:gstam@cs.ntua.gr
http://dx.doi.org/10.1016/j.websem.2015.02.001


D. Trivela et al. / Web Semantics: Science, Services and Agents on the World Wide Web 33 (2015) 30–49 31

S H I Q [11], a large fragment of OWL, and the proposed techniques
led to the development of KAON2 [14], one of the first practical
systems for answering SPARQL queries over OWL ontologies. Re-
cently, the technique has received considerable attention as it con-
stitutes (perhaps) the standard approach to query answering over
ontologies expressed in the languages DL-Lite [12,15], E LH I [13],
andHorn-S H I Q [16]. DL-Lite and E LH I are particularly important
as they are strongly related to the OWL 2 QL and OWL 2 EL pro-
files of OWL 2 [10]. Besides the theoretical works many prototype
systems have been developed, prominent examples of which in-
clude Mastro [17], Presto [15], Quest [18], Rapid [19], Nyaya [20],1
IQAROS [21], and Ontop [22] which support DL-Lite, Requiem [13],
which supports E LH I, and Clipper [16], which supports Horn-
S H I Q.

Some approaches for computing rewritings have exploited the
resolution-based calculi [23]. In this setting, the input is first
transformed into a set of clauses which is then saturated using
resolution to derive new clauses. The latter can either contain
function symbols or be function-free, while the output rewriting
consists of all the derived function-free clauses. Using resolution
has at least two benefits. First, such calculi are worst-case opti-
mal and allow for a large number of existing optimisations de-
veloped in the field of theorem-proving. Second, since there exist
many resolution-based decision procedures for expressive frag-
ments of first-order logic [24,25] it is (relatively) easier to design
a resolution-based rewriting algorithm for an expressive fragment
of OWL compared to designing a custom made one. For example,
to the best of our knowledge, none of the tailor made systems for
DL-Lite can currently support more expressive fragments of OWL,
while a resolution-based algorithm for all aforementioned frag-
ments exists.

However, the efficiency of resolution-based approaches has
also been criticised [26]. Even with all the existing optimisations
the saturation produces many clauses unnecessarily. More pre-
cisely, it can produce several clauses that contain function symbols
and which are not subsequently used to derive other function-free
clauses. Since these are neither part of the output rewriting nor
do they contribute to the derivation of members of the rewriting
their generation is superfluous with respect to query answering.
Moreover, exhaustive application of the resolution rule is likely to
create long derivations of clauses that are eventually redundant
(subsumed) and the standard optimisations of resolution are not
enough to provide a scalable approach. Consequently, the first gen-
eration systems (e.g., Requiem) have already been surpassed [27].

Motivated by the desire to design efficient rewriting algorithms
that can also support expressive fragments of OWL we present
novel resolution-based rewriting algorithms. We start from DL-
Lite and we show how a rewriting can be computed by greatly
restricting the standard (binary) resolution calculus initially used
in [28]. Roughly speaking, our calculus generates intermediate
clauses that contain function symbols only when it is known
that these will contribute to the generation of other function-free
clauses. This is implemented by a new resolution inference rule,
called shrinking, which packages many inference steps into one
macro-step and employs certain restrictions over the resolvents.

Subsequently, we extend our approach to the ontology lan-
guage E LH I by investigating whether a rewriting algorithm that
is again based on the shrinking rule can be defined. This is techni-
cally a very challenging task as the structure of E LH I axioms im-
plies many complex interactions between the clauses (note that,
in contrast to DL-Lite, checking concept subsumption in E LH I is
in ExpTime). However, we show that a rewriting can be computed
by an algorithm that contains an (arguably small) extension of the

1 Nyaya actually supports linear Datalog± .

shrinking rule of DL-Lite, called n-shrinking, plus a new resolution
rule, called function rule, which captures a very specific type of in-
teraction between roles (binary predicates of the form R(x, y)) and
their inverses (i.e., R(y, x)). Moreover, this new rule is strongly re-
lated to the extension of shrinking to n-shrinking. More precisely,
if the new rule is never applied, then n-shrinking reduces precisely
to the shrinking rule of DL-Lite. Hence, our algorithmhas very good
‘‘pay as you go’’ characteristics. That is, if the ontology is expressed
in E LH (i.e., does not allow for inverse roles), then it is guaranteed
that the new rule is never applied and n-shrinking can be simpli-
fied to shrinking, while the more inverse roles are used in axioms
the more the interaction between these two rules, which can cre-
ate a bottleneck. However, realistic ontologies usually contain few
inverse roles, hence we expect that the algorithm would usually
behave well in practice. Experimental evaluation and analysis ver-
ify our remarks.

Next, we discuss some implementation and optimisation issues
which led us to the design and implementation of Rapid, a practical
resolution-based system for computing rewritings.More precisely,
we discuss how one can present the rewriting in a compact form
reducing its size as well as some further optimisation for pruning
redundant clauses.

Finally, we conducted an extensive experimental evaluation
using a new test suite that includes several real-world large-scale
DL-Lite and E LH I ontologies hence greatly extending all existing
benchmarks. Regarding the experiments, our comparison against
several state-of-the-art systems has provided many encouraging
results. More precisely, our results show that existing systems
cannot always handle large-scale and complex ontologies as in
several cases they fail to terminate after running for more than
3 h. In contrast Rapid is in the vast majority of cases able to
compute a rewriting within a few seconds. Hence, to the best of
our knowledge, Rapid is currently the only system that can handle
ontologies of this complexity and size. Yet, there are still many
difficult cases that no system can handle.

2. Preliminaries

In this section we introduce the ontology languages E LH I and
DL-Lite which are strongly related to OWL 2 EL and OWL 2 QL
respectively; we briefly recall some basic notions from first-order
logic and resolution theorem-proving; we provide the definition
of conjunctive queries and of query rewriting; and we present an
overview of the query rewriting algorithm implemented in the
Requiem system since our calculi can be seen as a refinement of
this algorithm.

2.1. OWL ontologies and description logics

We focus on OWL (2) ontologies interpreted under the direct
semantics which are related to Description Logics (DL) [29]. DLs
provide the theoretical underpinning for many fragments of OWL
and there is a close connection between the functional syntax of
OWL and DLs [30,31]. For brevity we will adopt the DL notation
and terminology; hence, we will call classes and object properties
as atomic concepts and roles, respectively.

Let CN, RN , and IN be countable pairwise disjoint sets of atomic
concepts, atomic roles, and individuals. E LH I-concepts and E LH I-
roles are defined using the syntax in the left-hand side of the
upper two parts of Table 1, while on the right-hand side the
corresponding OWL functional syntax is given. An E LH I-ontology
O is a finite set of E LH I-axioms of the form depicted in the lower
part of Table 1. The Description Logic DL-LiteR,⊓ (for simplicity
DL-Lite in the following) is obtained from E LH I by disallowing
concepts of the form ∃R.C in the left-hand side of axioms. We call



Download English Version:

https://daneshyari.com/en/article/557640

Download Persian Version:

https://daneshyari.com/article/557640

Daneshyari.com

https://daneshyari.com/en/article/557640
https://daneshyari.com/article/557640
https://daneshyari.com

