
Web Semantics: Science, Services and Agents on the World Wide Web 24 (2014) 33–39

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Exploring Linked Data with contextual tag clouds
Xingjian Zhang ∗, Dezhao Song, Sambhawa Priya, Zachary Daniels, Kelly Reynolds,
Jeff Heflin
Department of Computer Science and Engineering, Lehigh University, USA

a r t i c l e i n f o

Article history:
Received 31 May 2013
Received in revised form
1 November 2013
Accepted 16 December 2013
Available online 30 January 2014

Keywords:
Linked Data
Tag cloud
Semantic data exploration
Scalability

a b s t r a c t

In this paper we present the contextual tag cloud system: a novel application that helps users explore a
large scale RDF dataset. Unlike folksonomy tags used inmost traditional tag clouds, the tags in our system
are ontological terms (classes and properties), and a user can construct a context with a set of tags that
defines a subset of instances. Then in the contextual tag cloud, the font size of each tag depends on the
number of instances that are associatedwith that tag and all tags in the context. Each contextual tag cloud
serves as a summary of the distribution of relevant data, and by changing the context, the user can quickly
gain anunderstanding of patterns in thedata. Furthermore, the user can choose to includeRDFS taxonomic
and/or domain/range entailment in the calculations of tag sizes, thereby understanding the impact of
semantics on the data. In this paper, we describe how the system can be used as a query building assistant,
a data explorer for casual users, or a diagnosis tool for data providers. To resolve the key challenge of
how to scale to Linked Data, we combine a scalable preprocessing approach with a specially-constructed
inverted index, use three approaches to prune unnecessary counts for faster online computations, and
design a paging and streaming interface. Together, these techniques enable a responsive system that in
particular holds a dataset with more than 1.4 billion triples and over 380,000 tags. Via experimentation,
we show how much our design choices benefit the responsiveness of our system.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We present the contextual tag cloud system1 as an attempt to
address the following questions: How can we help casual users
explore the Linked Open Data (LOD) cloud? Canwe provide amore
detailed summary of linkages beyond the LOD cloud diagram?2
Can we help data providers find potential errors or missing links
in a multi-source dataset of mixed quality? When a user wants
to design a SPARQL query for an unfamiliar dataset, they must
resolve three basic questions: (1) Syntactic Correctness: ‘‘What
classes are available?’’ (2) Semantic Correctness: ‘‘Does this class
refer to the concept I expect?’’ (3) Meaningful Results: ‘‘Does
the dataset hold enough knowledge coded with the vocabulary I
choose?’’ Since there are two aspects of a dataset: the ontological
terms (classes and properties) and the instances, the questions
cannot be answered by only viewing the ontology axioms or only
inspecting a small sample of instances. A combined view of both
aspects is necessary. Furthermore, there are two types of linkages:
ontological alignment and owl:sameAs links between instances.

∗ Corresponding author. Tel.: +1 610 758 4235.
E-mail address: xiz307@lehigh.edu (X. Zhang).

1 http://gimli.cse.lehigh.edu:8080/btc/.
2 http://lod-cloud.net/.

The usability of multi-source RDF dataset is largely affected by the
erroneous or missing links of both kinds in the dataset. If we can
emphasize the unlikely facts, then data providers will have a tool
to help them uncover such problems in the dataset.

Our solution is to use tag clouds to display statistical informa-
tion about the distribution of instances among various ontological
terms. A key feature is that each tag cloud is relative to a type con-
sisting of ontological terms that is dynamically defined by the user.
In analogy to traditional Web 2.0 tag cloud systems, an instance is
like a web document or photo, but is ‘‘tagged’’ with formal onto-
logical classes, as opposed to folksonomies. Tags are then another
name for the categories of instances.We extend the expressiveness
and treat classes, properties and inverse properties as tags that are
assigned to any instances that use these ontological terms in their
triples. The font sizes in the tag cloud reflect the number of match-
ing instances for each tag. We allow the user to change their focus
on a specific subset of instances in the dataset by specifying a com-
bination of ontological terms as the context on the fly, and then the
resulting contextual tag cloud will resize tags to indicate intersec-
tion with this context.

With any uncurated dataset, onemustmaintain a healthy skep-
ticism towards all axioms. Although materialization can lead to
many interesting facts, a single erroneous axiom could generate
thousands of errors. Rather than attempting to guesswhich axioms
are worthwhile, our system supports multiple levels of inference;
and at any time a user can view tag clouds with the same context

1570-8268/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.websem.2013.12.004

http://dx.doi.org/10.1016/j.websem.2013.12.004
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2013.12.004&domain=pdf
mailto:xiz307@lehigh.edu
http://gimli.cse.lehigh.edu:8080/btc/
http://lod-cloud.net/
http://dx.doi.org/10.1016/j.websem.2013.12.004

34 X. Zhang et al. / Web Semantics: Science, Services and Agents on the World Wide Web 24 (2014) 33–39

under different entailment regimes, which helps users understand
the dataset better and helps data providers investigate possible er-
rors in the dataset.

Starting from our initial version of the system [1] that used
DBPedia data,we add features and load the entire BTC2012 dataset.
This complex dataset contains 1.4 billion triples, from which we
extract 198.6M unique instances, and assign more than 380K
tags to these instances. This multi-source, large-scale dataset
brings us challenges in achieving acceptable runtime performance,
affordable preprocessing, and user-interface design. The rest of
the paper is organized as follows: we first formally define the
concepts and computation problems, and then showcase some use
scenarios along with introduction to system functionalities; then
we discuss the preprocessing steps, online computation andmulti-
level inference; after that we provide some experimental results;
then we compare with related works; and lastly we conclude.

2. Basic concepts

Given an RDF dataset, an entailment regime R defines what
kind of entailment rules will be applied to the explicit triples.
In our implementation, we have two specific sets of rules: RSub
for sub/equivalent class/property entailment (rdfs5, rdfs7, rdfs9,
rdfs113); and RDR for property domain/range entailment (rdfs2,
rdfs3). We also support the combination of these two sets, leading
to four distinct entailment regimes R = {∅, RSub, RDR, RSub ∪ RDR}.

Let I be the set of all the instances, and T be the set of all
possible tags assigned to instances in the dataset. Given R, the
function TagsR : I → 2T returns all the tags that are assigned to
the given instance under R-inference closure. For i ∈ I we assign
three types of tags: (1) Class C , if ⟨i, rdf:type, C⟩ is entailed under
R. (2) Property p, if ∃j ∈ I, ⟨i, p, j⟩ is entailed. (3) Inverse Property
p−, if ∃j ∈ I, ⟨j, p, i⟩ is entailed. Note under monotonic logic,
R1 ⊆ R2 ⇒ TagsR1(i) ⊆ TagsR2(i). The function InstR : 2T

→ 2I

returns the set of instances that have been assigned the given set
of tags. For convenience, we define the frequency of a set of tags T
as fR(T) = |InstR(T)|.

Given thatwe are substituting tags for triples,we can generalize
various entailment rules into tag subsumptions. Tag t1 is a sub tag
of tag t2 if and only if for all sets of assertional triples InstR({t1}) ⊆

InstR({t2}). Then the domain/range entailment can be turned into
sub tag relations. If ⟨p, rdfs:domain, C⟩ and ⟨p, rdfs:range,D⟩,
then p is a sub tag of C and p− is a sub tag of D.

A context is an expression of tags dynamically constructed
by a user. In our implementation, we allow intersections of any
number of tags or the negation of tags. A Negation Tag ∼t is
virtually assigned to an instance i, if t ∉ TagsR(i). Note that
the semantics are based on negation-as-failure. We argue that
this is the correct semantics for a system where what is not said
is sometimes as important as what is said. Thus a context with
{t1, . . . , tn, ∼ s1, . . . ,∼ sm} actually defines a subset of instances:
InstR({t1, . . . , tn}) −

x=1,...,m InstR({sx}). For a given context and

entailment regime R, the system shows all the tags used by any
instance in the subset specified by the context, and the size of
each tag reflects the number of instances having this tag within
the subset.

For convenience, we omit the subtle details required to process
negation tags for the remainder of this paper. This allows us to
present a simplified exposition where a context T ⊂ T is a set
of tags, and the instances specified by the context is InstR(T).

We define a contextual tag cloud, given context T ∈ T and
entailment regime R, as a list of tags [t1, . . . , tn] with various

3 http://www.w3.org/TR/rdf-mt/#RDFSRules.

font sizes [fs1, . . . , fsn] that reflects the instance sizes [fR(T ∪

{t1}), . . . , fR(T ∪ {tn})]. We always map the total number of
instances to the max font size, map 1 to the min font size, and for
any given tag frequency, we use log functions on it to calculate the
font sizes so that the tag cloud shows differences of tags in orders
of magnitude.

3. System features and use cases

The initial tag cloud has context T = ∅ or semantically T =

owl:Thing, and the tags in the cloud reflect the absolute sizes of
instances related to each tag. We put classes and properties into
two separate views, so that users will not treat a property called
‘‘author’’ (which may have domain Publication) as a class name by
mistake. To emphasize that difference, we also add an icon with
‘‘C’’ or ‘‘P’’ in front of each tag. If a tag is clicked, it will be added
to the current context, and then a new tag cloud will be shown for
the updated context. A user can add/remove any tags to/from the
context, and explore any dynamically defined types of instances.
A user can also switch to Instance View to investigate the detailed
triples of instances specified by the context.

A user can also change the inference regime, which by default
is RSub, the subsumption inference. Usually we can expect tags
to become larger when more inference is introduced. If R entails
that a set of tags are equivalent, we choose a canonical tag to
group them under. We display a ≡ after the canonical tag to
indicate this; clicking it will display the equivalent tags. Also for
any tag cloud, we can turn on the negation mode, and then the
tag sizes indicate how many instances do not have this tag under
the current context and inference level. A negation tag can be also
added to the context, which mathematically means the relative
complement. For example in Fig. 1, the property tag cloud with
context foaf:Group and ∼schema:MusicGroup shows us the
common property usages of instances of foaf:Group that are not
instances of schema:MusicGroup.

With the BTC dataset, a challenging problem for UI design is
howwe can show so many tags in the tag cloud. A straightforward
idea is to show tag clouds in pages. To help users locate specific
tags in the tag cloud, we initially sort the tags alphabetically by
their local names. When the system receives a request (context
T and inference R), it will process tags in the same alphabetic
order, and then stream out whatever is available for the requested
page. If the user chooses to browse tags alphabetically, then the
streaming of results is generally able to stay ahead of the user
by pre-fetching results for tags on subsequent pages. Instead of
browsing, a user can also search for tags by keywords. We index
the local name, rdfs:label and rdfs:comment (if it exists)
for each tag to support such keyword search. The retrieved tags
will then be shown in the tag cloud sorted by their relevance to
the keyword with their frequencies under the current context and
inference regime. In addition, we provide sorting by tag frequency
as another option, so that users can easily see the most popular
tags under the current context and inference. However, we have
to wait until all the frequencies are computed to enable this sort
option. For some contexts, it can take a fewminutes for the overall
computation of thousands of pages of results. We show a progress
bar of the computation and the estimated time left; and while
waiting for frequency sorting to be available, users can still browse
by alphabetical order or search with keywords.

We believe our system can be used for multiple purposes. Here
we shall briefly describe four scenarios of a user interacting with
the BTC dataset.

Choose the right terms for SPARQL.Auserwants to build a SPARQL
query on lakes, but does not know what classes about lakes are
available. Then by starting with a keyword search ‘‘lake’’, the user
is presented with a tag cloud with all tags that match the keyword,

http://www.w3.org/TR/rdf-mt/#RDFSRules

Download	English	Version:

https://daneshyari.com/en/article/557817

Download	Persian	Version:

https://daneshyari.com/article/557817

Daneshyari.com

https://daneshyari.com/en/article/557817
https://daneshyari.com/article/557817
https://daneshyari.com/

